Description

Edward has an array A with N integers. He defines the beauty of an array as the summation of all distinct integers in the array. Now Edward wants to know the summation of the beauty of all contiguous subarray of the array A.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 100000), which indicates the size of the array. The next line contains N positive integers separated by spaces. Every integer is no larger than 1000000.

Output

For each case, print the answer in one line.

Sample Input

3
5
1 2 3 4 5
3
2 3 3
4
2 3 3 2

Sample Output

105
21
38

这题直接想到了思路1A了。

假设f(n)表示以a[n]结尾的子区间互异数的和的和。对于f(n-1),可能会有两部分组成,一部分是包含a[n]这个值的A,一部分是不包含a[n]这个值的B,假设B由p个区间加和。那么可以得到:f(n) = A + B + p*a[n] = f(n-1) + p*a[n]。所以关键是求p。

而由于f(n-1)是以a[n-1]结尾的子区间互异数的和,必然的,假设a[i]是距离a[n]最近的值为a[n]的数,则p = n-i。于是只需要记录最近出现值k的脚标即可。这里采用了map,数据范围不是非常大,也可以直接开数组。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; int main()
{
//freopen("test.in", "r", stdin);
int T, n, v, k;
LL ans, f;
scanf("%d", &T);
for (int times = 0; times < T; ++times)
{
scanf("%d", &n);
map<int, int> s;
ans = 0;
f = 0;
for (int i = 1; i <= n; ++i)
{
scanf("%d", &v);
f = f + (i-s[v])*v;
s[v] = i;
ans += f;
}
printf("%lld\n", ans);
}
return 0;
}

AndyQsmart ACM学习历程——ZOJ3872 Beauty of Array(递推)的更多相关文章

  1. ACM学习历程—HDU1041 Computer Transformation(递推 && 大数)

    Description A sequence consisting of one digit, the number 1 is initially written into a computer. A ...

  2. ACM学习历程—ZOJ3777 Problem Arrangement(递推 && 状压)

    Description The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem sett ...

  3. ACM学习历程——HDU4472 Count(数学递推) (12年长春区域赛)

    Description Prof. Tigris is the head of an archaeological team who is currently in charge of an exca ...

  4. AndyQsmart ACM学习历程——ZOJ3870 Team Formation(位运算)

    Description For an upcoming programming contest, Edward, the headmaster of Marjar University, is for ...

  5. 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始

    以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告

  6. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  7. ACM学习历程—BestCoder Round #75

    1001:King's Cake(数论) http://acm.hdu.edu.cn/showproblem.php?pid=5640 这题有点辗转相除的意思.基本没有什么坑点. 代码: #inclu ...

  8. ACM学习历程—UESTC 1217 The Battle of Chibi(递推 && 树状数组)(2015CCPC C)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1217 题目大意就是求一个序列里面长度为m的递增子序列的个数. 首先可以列出一个递推式p(len, i) =  ...

  9. ACM学习历程—HDU2068 RPG的错排(组合数学)

    Description 今年暑假杭电ACM集训队第一次组成女生队,其中有一队叫RPG,但做为集训队成员之一的野骆驼竟然不知道RPG三个人具体是谁谁.RPG给他机会让他猜猜,第一次猜:R是公主,P是草儿 ...

随机推荐

  1. kotlin 语言入门指南(一)--基础语法

    基于官网的Getting Start的基础语法教程部分,一共三节,这篇是第一节,翻译如下: 基础语法 定义一个包 包的声明必须放在文件头部: package my.demo import java.u ...

  2. nyist oj 37 回文字符串 (动态规划经典)

    回文字符串 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 所谓回文字符串,就是一个字符串.从左到右读和从右到左读是全然一样的.比方"aba".当 ...

  3. js中insertAdjacentHTML的玩法

    原型:insertAdajcentHTML(swhere,stext) insertAdjacentHTML方法:在指定的地方插入html标签语句 参数:swhere: 指定插入html标签语句的地方 ...

  4. os引导程序boot从扇区拷贝os加载程序loader文件到内存(boot copy kernel to mem in the same method)

    [0]README 0.1) 本代码旨在演示 在boot 代码中,如何 通过 loader文件所在根目录条目 找出该文件的 在 软盘所有全局扇区号(簇号),并执行内存中的 loader 代码: 0.2 ...

  5. lombok插件安装

    eclipse安装lombok插件 lombok注解介绍 记得最后,加入的配置文件中的jar包,最好写成相对路径,这样.eclipse移动位置后,不会报错.

  6. Java 学习 day05

    01-面向对象(概述) 面向对象 -- 冰箱.打开:冰箱.存储:冰箱.关闭: 02-面向对象(举例) 使用和指挥 -- 对象,不需要关注过程,只关注结果: 一切皆对象,万物皆对象  -- 自<T ...

  7. EasyDSS高性能流媒体服务器前端重构(五)- webpack + vue-router 开发单页面前端实现按需加载 - 副本

    为了让页面更快完成加载, 第一时间呈现给客户端, 也为了帮助客户端节省流量资源, 我们可以开启 vue-router 提供的按需加载功能, 让客户端打开页面时, 只自动加载必要的资源文件, 当客户端操 ...

  8. 九度OJ 1081:递推数列 (递归,二分法)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6194 解决:864 题目描述: 给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q.这里n >= 2. 求第 ...

  9. WordPress用户角色及其权限管理编辑插件:User Role Editor汉化版

    如果Wordpress默认的用户角色及权限不能满足您的需求,又觉得修改代码编辑用户权限太麻烦.那不妨试试User Role Editor,Wordpress用户角色及其权限管理编辑插件. User R ...

  10. crm高速开发之EntityCollection

    /* 创建者:菜刀居士的博客  * 创建日期:2014年07月07号  */ namespace Net.CRM.OrganizationService {     using System;     ...