神仙zq发现了${n^2\sqrt n}\over 32$做法

Description

你有三个系数为0,1的多项式f(x),g(x),h(x)
求f(g(x)) mod h(x)
为方便起见,将答案多项式所有系数对2取模输出即可
如果f(x)=Sigma(Ak * Xk)
则f(g(x))=Sigma(Ak(g(x))K

Input

一共三行,每行一个多项式,分别为f,g,h
对于一个多项式描述为n P0,P1...Pn其中Pi为0或1
多项式P(x)=P0+P1*x+....+Pn*xn
记n表示多项式最高项的次数,n<=4000

Output

用同样的格式输出答案多项式
如果答案为0,输出0 0

题目分析

陈老师神题x1

观察到这里多项式的所有操作都是在系数$\mod 2$的意义下的,因此可以用bitset来加速多项式的一些操作。例如$O(n^2)$实现多项式取模。

 void mod(poly &a, int pos)
{
for (int i=pos; i>=p; i--)
if (a[i]) a ^= c<<(i-p), a[i] = 0;  //我第一次居然把标红地方给忘了
}

但是如同很多bitset的技巧题一样,非常重要的一点是bitset每次整体操作的复杂度是  $O(size)$  的。

这意味着$Poly\, +:O(n), \, Poly\, *:O(n^2)$

接下去我们从暴力开始谈起。

暴力做法 $O({{n^3}\over 32})$

第一个需要解决的问题是:$f(g(x))$。那么我们只需要对$g(x)$求$k$次幂(也即最暴力地k次自乘),再将这些结果相加得到多项式$f(g(x))$。至于取模的过程,则可以在每次multiply的时候顺带模干净,这样最终相加得到的结果就是在模多项式意义下的答案。

 void mod(poly &a, int pos)    //pos是a的度数
{
for (int i=pos; i>=p; i--)
if (a[i]) a ^= c<<(i-p), a[i] = ;
}
void mult(poly a, poly b, poly &ret)    //ret=a*b
{
ret.reset();
for (int i=; i<=p; i++)
if (a[i]) ret ^= b<<i;  //这里就是模拟n^2多项式乘法的过程
mod(ret, p<<);
}

总的代码:

 #include<bits/stdc++.h>
const int maxn = ;
typedef std::bitset<maxn> poly; int n,m,p;
poly a,b,c,tmp,cnt; void input(poly &a, int &n)
{
scanf("%d",&n);
for (int i=, x; i<=n; i++)
{
scanf("%d",&x);
if (x) a.set(i);
}
}
void mod(poly &a, int pos)
{
for (int i=pos; i>=p; i--)
if (a[i]) a ^= c<<(i-p), a[i] = ;
}
void mult(poly a, poly b, poly &ret)
{
ret.reset();
for (int i=; i<=p; i++)
if (a[i]) ret ^= b<<i;
mod(ret, p<<);
}
int main()
{
input(a, n), input(b, m), input(c, p);
tmp[] = , mod(b, m);
for (int i=; i<=n; i++)
{
if (a[i]) cnt ^= tmp;
mult(tmp, b, tmp);    //复杂度n^3在这里
}
while (p>=&&!cnt[p]) --p;
if (p==-) puts("0 0");
else{
printf("%d",p);
for (int i=; i<=p; i++)
printf(" %d",cnt[i]?:);
}
return ;
}

对系数按10位分块 $O({{n^3}\over 320})$

参见法老博客:[BITSET 分块] BZOJ5087. polycomp

注:md[t]并不一定要等于0.这里的取模多项式最高位对计算无影响。

容易发现这种做法的复杂度的阶仍然是$n^3$.

对$i=a\sqrt k+b$分块 $O({{n^2\sqrt n}\over 32})$

233

【bitset 技巧 分块】bzoj5087: polycomp的更多相关文章

  1. Codeforces-914F Substrings in a String (Bitset求T串中S串出现次数)

    之前有过区域赛,简化版问题: 给定一个小写字符组成的字符串S,(|S|<1e5,下标从1开始),现在有Q种操作,对于每个操作Q(Q<=1e5),输入opt, 如果opt==1,输入x,c, ...

  2. bzoj3758. 数数

    题解: 一波优秀的打表技巧 分块打表,分成1000组,打表打出来 另外10^6暴力算

  3. ACM-ICPC国际大学生程序设计竞赛北京赛区(2015)网络赛 Scores

    #1236 : Scores 时间限制:4000ms 单点时限:4000ms 内存限制:256MB 描述 Kyle is a student of Programming Monkey Element ...

  4. CTS&&APIO2019爆零记

    如果你只好奇测试相关请跳至day 2 day 3 day 6 scoi 2019 之后 ​ 由于实力问题,省选的时候排名在三十多,显然是没有进队.不过可能是受过的打击比较多,所以还没有特别颓废,甚至连 ...

  5. 个人训练记录(UPD 9.16)

    本文章记录一些较难的题,摘自自己的blog中的其他文章.也有些单独成章有点浪费的题也写在里面了. 2019.7.15-2019.7.21 1182F(2900) 题意:求在区间 \([a,b]\) 中 ...

  6. ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879

    ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879 A 签到,dfs 或者 floyd 都行. #i ...

  7. Sobol 序列并行化的实践经验

    目录 Sobol 序列并行化的实践经验 随机数发生器并行化的常见策略 Sobol 序列的原理和跳转功能 Sobol 序列并行化实践 分块策略 蛙跳策略 蛙跳策略的计算量分析 减少异或计算的技巧 分块策 ...

  8. 【分块】【bitset】hdu6085 Rikka with Candies

    给你数组A和B,A B中的元素大小都不超过5w,且两两不同. q次询问,每次给你个k,问你有多少对(i,j),满足A(i)%B(j)==k. 如题目所言模拟bitset的过程,实质上是个分块,每块的大 ...

  9. 种树 by yoyoball [树分块+bitset]

    题面 给定一棵树,有点权 每次询问给出一些点对,求这些点对之间的路径的并集上不同权值的个数,以及这些权值的$mex$ 思路 先考虑只有一对点对,只询问不同权值个数的问题:树上莫队模板题 然后加个$me ...

随机推荐

  1. java五行代码导出Excel

    目录 先看代码 再看效果 EasyExcel 附: Java按模板导出Excel---基于Aspose实现 Java无模板导出Excel,Apache-POI插件实现 已经写过两种Excel导出插件了 ...

  2. Nacos深入浅出(四)

    private void executeAsyncInvoke() { while (!queue.isEmpty()) { NotifySingleTask task = queue.poll(); ...

  3. 黑马旅游网配置 pom.xml

    <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...

  4. 分享| 语义SLAM的未来与思考(泡泡机器人)

    相比典型的点云地图,语义地图能够很好的表示出机器人到的地方是什么,机器人“看”到的东西是什么.比如进入到一个房间,点云地图中,机器人并不能识别显示出来的一块块的点云到底是什么,但是语义地图的构建可以分 ...

  5. 【bzoj1503】[NOI2004]郁闷的出纳员

    1503: [NOI2004]郁闷的出纳员 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 13890  Solved: 5086[Submit][Stat ...

  6. Runner启动器

    Runner启动器的两种创建方式: 实现ApplicationRunner接口,复写run()方法 实现CommandLineRunner接口,复写run()方法 Runner启动器的执行顺序 如果一 ...

  7. Spring Bean的一生

    Spring Bean的一生 When you work directly in Java, you can do anything you like with your objects and do ...

  8. 1126 数字统计 2010年NOIP全国联赛普及组

    1126 数字统计 2010年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver         题目描述 Description 请统计某个 ...

  9. Kendo UI Widgets 概述

    UI Widgets 概述 Kendo UI 是基于 jQuery 库开发的,Kendo UI widgets 是以 jQuery 插件形式提供的.这些插件的名称基本上都是以 kendo 作为前缀.比 ...

  10. JDBC事务--软件开发三层架构--ThreadLocal

    JDBC事务--软件开发三层架构--ThreadLocal 一.JDBC事务 1.概述: 事务是指逻辑上的一组操作!这一组操作,通常认为是一个整体,不可拆分! 特点:同生共死;事务内的这一组操作要么全 ...