【bitset 技巧 分块】bzoj5087: polycomp
神仙zq发现了${n^2\sqrt n}\over 32$做法
Description
Input
Output
题目分析
陈老师神题x1
观察到这里多项式的所有操作都是在系数$\mod 2$的意义下的,因此可以用bitset来加速多项式的一些操作。例如$O(n^2)$实现多项式取模。
void mod(poly &a, int pos)
{
for (int i=pos; i>=p; i--)
if (a[i]) a ^= c<<(i-p), a[i] = 0; //我第一次居然把标红地方给忘了
}
但是如同很多bitset的技巧题一样,非常重要的一点是bitset每次整体操作的复杂度是 $O(size)$ 的。
这意味着$Poly\, +:O(n), \, Poly\, *:O(n^2)$
接下去我们从暴力开始谈起。
暴力做法 $O({{n^3}\over 32})$
第一个需要解决的问题是:$f(g(x))$。那么我们只需要对$g(x)$求$k$次幂(也即最暴力地k次自乘),再将这些结果相加得到多项式$f(g(x))$。至于取模的过程,则可以在每次multiply的时候顺带模干净,这样最终相加得到的结果就是在模多项式意义下的答案。
void mod(poly &a, int pos) //pos是a的度数
{
for (int i=pos; i>=p; i--)
if (a[i]) a ^= c<<(i-p), a[i] = ;
}
void mult(poly a, poly b, poly &ret) //ret=a*b
{
ret.reset();
for (int i=; i<=p; i++)
if (a[i]) ret ^= b<<i; //这里就是模拟n^2多项式乘法的过程
mod(ret, p<<);
}
总的代码:
#include<bits/stdc++.h>
const int maxn = ;
typedef std::bitset<maxn> poly; int n,m,p;
poly a,b,c,tmp,cnt; void input(poly &a, int &n)
{
scanf("%d",&n);
for (int i=, x; i<=n; i++)
{
scanf("%d",&x);
if (x) a.set(i);
}
}
void mod(poly &a, int pos)
{
for (int i=pos; i>=p; i--)
if (a[i]) a ^= c<<(i-p), a[i] = ;
}
void mult(poly a, poly b, poly &ret)
{
ret.reset();
for (int i=; i<=p; i++)
if (a[i]) ret ^= b<<i;
mod(ret, p<<);
}
int main()
{
input(a, n), input(b, m), input(c, p);
tmp[] = , mod(b, m);
for (int i=; i<=n; i++)
{
if (a[i]) cnt ^= tmp;
mult(tmp, b, tmp); //复杂度n^3在这里
}
while (p>=&&!cnt[p]) --p;
if (p==-) puts("0 0");
else{
printf("%d",p);
for (int i=; i<=p; i++)
printf(" %d",cnt[i]?:);
}
return ;
}
对系数按10位分块 $O({{n^3}\over 320})$
参见法老博客:[BITSET 分块] BZOJ5087. polycomp
注:md[t]并不一定要等于0.这里的取模多项式最高位对计算无影响。
容易发现这种做法的复杂度的阶仍然是$n^3$.
对$i=a\sqrt k+b$分块 $O({{n^2\sqrt n}\over 32})$
233
【bitset 技巧 分块】bzoj5087: polycomp的更多相关文章
- Codeforces-914F Substrings in a String (Bitset求T串中S串出现次数)
之前有过区域赛,简化版问题: 给定一个小写字符组成的字符串S,(|S|<1e5,下标从1开始),现在有Q种操作,对于每个操作Q(Q<=1e5),输入opt, 如果opt==1,输入x,c, ...
- bzoj3758. 数数
题解: 一波优秀的打表技巧 分块打表,分成1000组,打表打出来 另外10^6暴力算
- ACM-ICPC国际大学生程序设计竞赛北京赛区(2015)网络赛 Scores
#1236 : Scores 时间限制:4000ms 单点时限:4000ms 内存限制:256MB 描述 Kyle is a student of Programming Monkey Element ...
- CTS&&APIO2019爆零记
如果你只好奇测试相关请跳至day 2 day 3 day 6 scoi 2019 之后 由于实力问题,省选的时候排名在三十多,显然是没有进队.不过可能是受过的打击比较多,所以还没有特别颓废,甚至连 ...
- 个人训练记录(UPD 9.16)
本文章记录一些较难的题,摘自自己的blog中的其他文章.也有些单独成章有点浪费的题也写在里面了. 2019.7.15-2019.7.21 1182F(2900) 题意:求在区间 \([a,b]\) 中 ...
- ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879
ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction hihocoder1870~1879 A 签到,dfs 或者 floyd 都行. #i ...
- Sobol 序列并行化的实践经验
目录 Sobol 序列并行化的实践经验 随机数发生器并行化的常见策略 Sobol 序列的原理和跳转功能 Sobol 序列并行化实践 分块策略 蛙跳策略 蛙跳策略的计算量分析 减少异或计算的技巧 分块策 ...
- 【分块】【bitset】hdu6085 Rikka with Candies
给你数组A和B,A B中的元素大小都不超过5w,且两两不同. q次询问,每次给你个k,问你有多少对(i,j),满足A(i)%B(j)==k. 如题目所言模拟bitset的过程,实质上是个分块,每块的大 ...
- 种树 by yoyoball [树分块+bitset]
题面 给定一棵树,有点权 每次询问给出一些点对,求这些点对之间的路径的并集上不同权值的个数,以及这些权值的$mex$ 思路 先考虑只有一对点对,只询问不同权值个数的问题:树上莫队模板题 然后加个$me ...
随机推荐
- java五行代码导出Excel
目录 先看代码 再看效果 EasyExcel 附: Java按模板导出Excel---基于Aspose实现 Java无模板导出Excel,Apache-POI插件实现 已经写过两种Excel导出插件了 ...
- Nacos深入浅出(四)
private void executeAsyncInvoke() { while (!queue.isEmpty()) { NotifySingleTask task = queue.poll(); ...
- 黑马旅游网配置 pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...
- 分享| 语义SLAM的未来与思考(泡泡机器人)
相比典型的点云地图,语义地图能够很好的表示出机器人到的地方是什么,机器人“看”到的东西是什么.比如进入到一个房间,点云地图中,机器人并不能识别显示出来的一块块的点云到底是什么,但是语义地图的构建可以分 ...
- 【bzoj1503】[NOI2004]郁闷的出纳员
1503: [NOI2004]郁闷的出纳员 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 13890 Solved: 5086[Submit][Stat ...
- Runner启动器
Runner启动器的两种创建方式: 实现ApplicationRunner接口,复写run()方法 实现CommandLineRunner接口,复写run()方法 Runner启动器的执行顺序 如果一 ...
- Spring Bean的一生
Spring Bean的一生 When you work directly in Java, you can do anything you like with your objects and do ...
- 1126 数字统计 2010年NOIP全国联赛普及组
1126 数字统计 2010年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 请统计某个 ...
- Kendo UI Widgets 概述
UI Widgets 概述 Kendo UI 是基于 jQuery 库开发的,Kendo UI widgets 是以 jQuery 插件形式提供的.这些插件的名称基本上都是以 kendo 作为前缀.比 ...
- JDBC事务--软件开发三层架构--ThreadLocal
JDBC事务--软件开发三层架构--ThreadLocal 一.JDBC事务 1.概述: 事务是指逻辑上的一组操作!这一组操作,通常认为是一个整体,不可拆分! 特点:同生共死;事务内的这一组操作要么全 ...