等差数列划分II 子序列

如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列。

例如,以下数列为等差数列:

1, 3, 5, 7, 9

7, 7, 7, 7

3, -1, -5, -9

以下数列不是等差数列。

1, 1, 2, 5, 7

数组 A 包含 N 个数,且索引从 0 开始。该数组子序列将划分为整数序列 (P0, P1, ..., Pk),P 与 Q 是整数且满足 0 ≤ P0 < P1 < ... < Pk < N。

如果序列 A[P0],A[P1],...,A[Pk-1],A[Pk] 是等差的,那么数组 A 的子序列 (P0,P1,…,PK) 称为等差序列。值得注意的是,这意味着 k ≥ 2。

函数要返回数组 A 中所有等差子序列的个数。

输入包含 N 个整数。每个整数都在 -231 和 231-1 之间,另外 0 ≤ N ≤ 1000。保证输出小于 231-1。

示例:

输入:[2, 4, 6, 8, 10]

输出:7

解释:

所有的等差子序列为:

[2,4,6]

[4,6,8]

[6,8,10]

[2,4,6,8]

[4,6,8,10]

[2,4,6,8,10]

[2,6,10]

Dynamic Programming [Accepted]

Intuition

To determine an arithmetic sequence, we need at least two parameters: the first (or last) element of the sequence, and the common difference.

Algorithm

Starting from this point, we can easily figure out that one state representation that may work:

f[i][d] denotes the number of arithmetic subsequences that ends with A[i] and its common difference is d.

Let's try to find the state transitions based on the representation above. Assume we want to append a new element A[i] to existing arithmetic subsequences to form new subsequences. We can append A[i] to an existing arithmetic subsequence, only if the difference between the sequence's last element and A[i] is equal to the sequence's common difference.

Thus, we can define the state transitions for the element A[i] intuitively :

for all j < i, f[i][A[i] - A[j]] += f[j][A[i] - A[j]].

This demonstrates the appending process above to form new arithmetic subsequences.

But here comes the problem. Initially all f[i][d] are set to be 0, but how can we form a new arithmetic subsequence if there are no existing subsequences before?

In the original definition of arithmetic subsequences, the length of the subsequence must be at least 3. This makes it hard to form new subsequences if only two indices i and j are given. How about taking the subsequences of length 2 into account?

We can define weak arithmetic subsequences as follows:

Weak arithmetic subsequences are subsequences that consist of at least two elements and if the difference between any two consecutive elements is the same.

There are two properties of weak arithmetic subsequences that are very useful:

  • For any pair i, j (i != j), A[i] and A[j] can always form a weak arithmetic subsequence.
  • If we can append a new element to a weak arithmetic subsequence and keep it arithmetic, then the new subsequence must be an arithmetic subsequence.

The second property is quite trival, because the only difference between arithmetic subsequences and weak arithmetic subsequences is their length.

Thus we can change the state representations accordingly:

f[i][d] denotes the number of weak arithmetic subsequences that ends with A[i] and its common difference is d.

Now the state transitions are quite straightforward:

for all j < i, f[i][A[i] - A[j]] += (f[j][A[i] - A[j]] + 1).

The 1 appears here because of the property one, we can form a new weak arithmetic subsequence for the pair (i, j).

Now the number of all weak arithmetic subsequences is the sum of all f[i][d]. But how can we get the number of arithmetic subsequences that are not weak?

There are two ways:

  • First, we can count the number of pure weak arithmetic subsequences directly. The pure weak arithmetic subsequences are the arithmetic subsequences of length 2, so the number of pure weak arithmetic subsequences should be equal to the number of pairs (i, j), which is (n2)=n∗(n−1)2.\binom{n}{2} = \frac{n * (n - 1)}{2}.(2n​)=2n∗(n−1)​.
  • Second, for the summation f[i][A[i] - A[j]] += (f[j][A[i] - A[j]] + 1), f[j][A[i] - A[j]] is the number of existing weak arithmetic subsequences, while 1 is the new subsequence built with A[i] and A[j]. Based on property two, when we are appending new elements to existing weak arithmetic subsequences, we are forming arithmetic subsequences. So the first part, f[j][A[i] - A[j]] is the number of new formed arithmetic subsequences, and can be added to the answer.

We can use the following example to illustrate the process:

[1, 1, 2, 3, 4, 5]

We need to count the answer for the above sequence.

  • For the first element 1, there is no element in front of it, the answer remains 0.
  • For the second element 1, the element itself with the previous 1 can form a pure weak arithmetic subsequence with common difference 0 : [1, 1].
  • For the third element 2, it cannot be appended to the only weak arithmetic subsequence [1, 1], so the answer remains 0. Similar to the second element, it can form new weak arithmetic subsequences [1, 2] and [1, 2].
  • For the forth element 3, if we append it to some arithmetic subsequences ending with 2, these subsequences must have a common difference of 3 - 2 = 1. Indeed there are two: [1, 2] and [1, 2]. So we can append 3 to the end of these subsequences, and the answer is added by 2. Similar to above, it can form new weak arithmetic subsequences [1, 3], [1, 3] and [2, 3].
  • The other elements are the same, we can view the process in the figure below. The red bracket indicates the weak arithmetic subsequence of length 2, and the black bracket indicates the arithmetic subsequence. The answer should be the total number of black brackets.

 class Solution {
public int numberOfArithmeticSlices(int[] A) {
int n = A.length;
long ans = 0;
Map<Integer, Integer>[] cnt = new Map[n];
for (int i = 0; i < n; i++) {
cnt[i] = new HashMap<>(i);
for (int j = 0; j < i; j++) {
long delta = (long)A[i] - (long)A[j];
if (delta < Integer.MIN_VALUE || delta > Integer.MAX_VALUE) {
continue;
}
int diff = (int)delta;
int sum = cnt[j].getOrDefault(diff, 0);
int origin = cnt[i].getOrDefault(diff, 0);
cnt[i].put(diff, origin + sum + 1);
ans += sum;
}
}
return (int)ans;
}
}

Leetcode 446.等差数列划分II 子序列的更多相关文章

  1. Java实现 LeetCode 446 等差数列划分 II - 子序列

    446. 等差数列划分 II - 子序列 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 ...

  2. [Swift]LeetCode446. 等差数列划分 II - 子序列 | Arithmetic Slices II - Subsequence

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  3. Leetcode 413.等差数列划分

    等差数列划分 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, -5, -9 ...

  4. Java实现 LeetCode 413 等差数列划分

    413. 等差数列划分 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, - ...

  5. Leetcode——413. 等差数列划分

    题目描绘:题目链接 题目中需要求解一个数组中等差数组的个数,这个问题可以利用动态规划的思路来分析. 三步骤: 1:问题归纳.题目需要求解等差数列的和,我们可以用一个数组保存前i个元素可以构成的等差数列 ...

  6. LeetCode 446. Arithmetic Slices II - Subsequence

    原题链接在这里:https://leetcode.com/problems/arithmetic-slices-ii-subsequence/ 题目: A sequence of numbers is ...

  7. 第六周 Leetcode 446. Arithmetic Slices II - Subsequence (HARD)

    Leetcode443 题意:给一个长度1000内的整数数列,求有多少个等差的子数列. 如 [2,4,6,8,10]有7个等差子数列. 想了一个O(n^2logn)的DP算法 DP[i][j]为 对于 ...

  8. Leetcode之动态规划(DP)专题-413. 等差数列划分(Arithmetic Slices)

    Leetcode之动态规划(DP)专题-413. 等差数列划分(Arithmetic Slices) 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为 ...

  9. LeetCode Single Number I / II / III

    [1]LeetCode 136 Single Number 题意:奇数个数,其中除了一个数只出现一次外,其他数都是成对出现,比如1,2,2,3,3...,求出该单个数. 解法:容易想到异或的性质,两个 ...

随机推荐

  1. vuex的state,mutation,getter,action

    开始!正常的简单的拆分下是这样的文件当然module可以在store下面新建一个文件夹用来处理单独模块的vuex管理比较合适. 1.index.js下面 import Vue from 'vue' i ...

  2. NVM for Windows下载与安装

    下载NVM for Windows https://github.com/coreybutler/nvm-windows/releases nvm-noinstall.zip: 这个是绿色免安装版本, ...

  3. 洛谷 P1057 传球游戏

    题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同 ...

  4. 用Jersey为Android客户端开发Restful Web Service

    平时在做Android客户端的时候经常要与服务器之间通信,客户端通过服务端提供的接口获取数据,然后再展示在客户端的界面上,作为Android开发者,我们平时更多的是关注客户端的开发,而对服务端开发的关 ...

  5. Leetcode重点 250题-前400 题

    删除不常考,面试低频出现题目 删除重复代码题目(例:链表反转206题,代码在234题出现过) 删除过于简单题目(例:100题:Same Tree) 删除题意不同,代码基本相同题目(例:136 & ...

  6. 2018.5.11 Java利用反射实现对象克隆

    package com.lanqiao.demo; /** * 创建人 * @author qichunlin * */ public class Person { private int id; p ...

  7. C语言中math.h中常用的函数

    1.绝对值 ①函数原型: int abs(int x); 函数功能: 求整数x的绝对值 int number=-1234; abs(number); ②函数原型:double fabs(double ...

  8. CPP-基础:extern"C"

    简介:extern "C" 包含双重含义,从字面上即可得到:首先,被它修饰的目标是“extern”的:其次,被它修饰的目标是“C”的.让我们来详细解读这两重含义. 含义: 1.被e ...

  9. flowvisor连接ovs

    1 开启flowvisor $ sudo -u flowvisor fvconfig generate /etc/flowvisor/config.json $ sudo /etc/init.d/fl ...

  10. ssh整合思想 Spring与Hibernate的整合 项目在服务器启动则自动创建数据库表

    Spring整合Hibernate Spring的Web项目中,web.xml文件会自动加载,以出现欢迎首页.也可以在这个文件中对Spring的配置文件进行监听,自启动配置文件, 以及之前Struts ...