https://colah.github.io/posts/2014-10-Visualizing-MNIST/

PCA tries to preserve linear structure, MDS tries to preserve global geometry, and t-SNE tries to preserve topology (neighborhood structure)的更多相关文章

  1. 降维算法整理--- PCA、KPCA、LDA、MDS、LLE 等

    转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes 网上关于各种降维算法的资料参差不齐,同时大部分不提供源 ...

  2. Visualizing MNIST with t-SNE, MDS, Sammon’s Mapping and Nearest neighbor graph

    MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, n ...

  3. 可视化MNIST之降维探索Visualizing MNIST: An Exploration of Dimensionality Reduction

    At some fundamental level, no one understands machine learning. It isn’t a matter of things being to ...

  4. Self-organizing Maps及其改进算法Neural gas聚类在异常进程事件识别可行性初探

    catalogue . SOM简介 . SOM模型在应用中的设计细节 . SOM功能分析 . Self-Organizing Maps with TensorFlow . SOM在异常进程事件中自动分 ...

  5. [Scikit-learn] 4.4 Dimensionality reduction - PCA

    2.5. Decomposing signals in components (matrix factorization problems) 2.5.1. Principal component an ...

  6. 多维标度法(MDS)的Python实现

    多维标度法(multidimensional scaling,MDS)是一种在低维空间展示“距离”数据结构的多元数据分析技术,是一种将多维空间的研究对象( 样本 或 变量 ) 简化到低维空间进行定位. ...

  7. Python机器学习笔记 使用scikit-learn工具进行PCA降维

    之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...

  8. Create Your Content and Structure

    The original page source Content is the most important aspect of any site. So let's design for the c ...

  9. 机器学习之PCA主成分分析

    前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很 ...

随机推荐

  1. 源码分析——迁移学习Inception V3网络重训练实现图片分类

    1. 前言 近些年来,随着以卷积神经网络(CNN)为代表的深度学习在图像识别领域的突破,越来越多的图像识别算法不断涌现.在去年,我们初步成功尝试了图像识别在测试领域的应用:将网站样式错乱问题.无线领域 ...

  2. 洛谷—— P2884 [USACO07MAR]每月的费用Monthly Expense

    https://www.luogu.org/problemnew/show/P2884 题目描述 Farmer John is an astounding accounting wizard and ...

  3. 洛谷——P2626 斐波那契数列(升级版)

    P2626 斐波那契数列(升级版) 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ ...

  4. codevs——1576 最长严格上升子序列(序列DP)

     时间限制: 1 s  空间限制: 256000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 给一个数组a1, a2 ... an,找到最长的上升降子序列 ...

  5. TIOBE排行榜

    作者:码思客链接:https://zhuanlan.zhihu.com/p/37513668来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 1 JAVA 毫无疑问的业界 ...

  6. ZOJ 1232 Adventure of Super Mario (Floyd + DP)

    题意:有a个村庄,编号为1到a,有b个城堡,编号为a+1到a+b.现在超级玛丽在a+b处,他的家在1处.每条路是双向的,两端地点的编号以及路的长度都已给出.路的长度和通过所需时间相等.他有一双鞋子,可 ...

  7. wireshark学习笔记

    之前写过一篇博客:用 Fiddler 来调试HTTP,HTTPS. 这篇文章介绍另一个好用的抓包工具wireshark, 用来获取网络数据封包,包括http,TCP,UDP,等网络协议包. 记得大学的 ...

  8. 【spring boot hibernate】hibernate命名策略spring.jpa.hibernate.naming-strategy不起作用

    对于 spring.jpa.hibernate.naming-strategy = org.hibernate.cfg.ImprovedNamingStrategy hibernate命名策略设置之后 ...

  9. HDU4004

    题目大意,有一条长度为L和河流,中间穿插n个石凳,青蛙跳m次经过石凳后到达对岸,求青蛙每次跳跃的最大距离的最小值 本题数据量大n<500000,显然简单的o(n*n)算法是通过不了的,在输入大量 ...

  10. Linux进程的睡眠和唤醒

    1   Linux进程的睡眠和唤醒 在Linux中,仅等待CPU时间的进程称为就绪进程,它们被放置在一个运行队列中,一个就绪进程的状态标志位为TASK_RUNNING.一旦一个运行中的进程时间片用完, ...