Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking 

本文目标在于 tracking performance 和 efficiency 之间达到一种平衡。将 tracking 过程分解为两个并行但是相互协作的部分:

  一个用于快速的跟踪(fast tracking);

  另一个用于准确的验证(accurate verification)。

  

本文的 Motivation 主要是:

  1. 大部分跟踪的序列,都是比较平坦简单的,但是存在有些非常具有挑战性的片段的存在,使得跟踪的结果不是非常的好。如果处理不好,还会导致跟踪的丢失。本文利用 verifiers 将进行这些关键点的处理。

  2. 计算机视觉当中多线程计算已经非常普遍,特别是 SLAM。By splitting tracking and mapping into two parallel threads, PTAM (parallel tracking and mapping) [23] provides one of the most popular SLAM frameworks with many important extensions.

  3. 最近快速、准确的跟踪算法提供了有效的 building blocks,并且鼓励我们去寻找组合的解决方法(呵呵了。。。)

创新点:

  1. we propose to build real-time high accuracy trackers in a novel framework named parallel tracking and verifying (PTAV).

  2. The key idea is : while T needs to run on every frame, V does not. As a general framework, PTAV allows the coordination between the tracker and the verifier: V checks the
tracking results provided by T and sends feedback to V; and V adjusts itself according to the feedback when necessary. By running T and V in parallel, PTAV inherits both the high
efficiency of T and the strong discriminative power of V.

==========  分割线  =========

======== 以上是 PTAV framework 的流程图,也是两个 tracker 和 verifiers 之间互相协助的过程。

PTAV Implementation:

1. Tracking 的过程就是利用了 fDSST 跟踪算法,没啥好说的;但是不同的是, the tracker in this paper,存储了所有的中间结果,since sending out last verification request to ensure fast tracing back.

2. Verifying 是采用了 Siamese network。

  ==>> 当从 tracking 过程中得到的跟踪结果,如果其验证得分低于一个阈值,那么 V 就认为该跟踪结果不可靠,或者说认为已经跟踪失败了。

  此时,V 利用Siamese network,在进行一次检测。具体做法就是利用 region pooling layer 进行一次前传,然后得到许多候选的样本,然后从中选择最好的那个作为检测的结果:

  

  当有了这些检测结果之后,我们在进行一次 check,确认下检测结果是否可信? 其实就是根据检测的置信度和某一阈值进行比较,如果不符合要求,就放大搜索区域,进行再一次的搜索。

  

============================= 算法部分完毕

实验结果:

想想真可怕,作者居然不辞劳苦的跑了四个数据集。。。

论文笔记:Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking的更多相关文章

  1. Summary on Visual Tracking: Paper List, Benchmarks and Top Groups

    Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...

  2. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  3. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  4. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  5. 论文笔记: Dual Deep Network for Visual Tracking

    论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. ...

  6. Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记

    原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...

  7. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  8. 论文笔记:Deeper and Wider Siamese Networks for Real-Time Visual Tracking

    Deeper and Wider Siamese Networks for Real-Time Visual TrackingUpdated on 2019-04-01 16:10:37 Paper ...

  9. 论文笔记:Learning regression and verification networks for long-term visual tracking

    Learning regression and verification networks for long-term visual tracking 2019-02-18 22:12:25 Pape ...

随机推荐

  1. uva 10600 ACM Contest And Blackout

    题意: 求最小生成树和次小生成树的总权值. 思路: 第一种做法,适用于规模较小的时候,prim算法进行的时候维护在树中两点之间路径中边的最大值,复杂度O(n^2),枚举边O(m),总复杂度O(n^2) ...

  2. Java 内存分配

    静态储存区:全局变量,static 内存在编译的时候就已经分配好了,并且这块内存在程序运行期间都存在. 栈储存区:1,局部变量.2,,保存类的实例,即堆区对象的引用.也可以用来保存加载方法时的帧.函数 ...

  3. Markdown编辑器使用说明

    Markdown编辑器使用说明 #编辑器使用说明编辑器仅用来编辑文章的样式,建议在其他文档中写好内容,再复制到此处编辑样式--- ## 编辑器使用介绍—非开发者 非开发者,可以将编辑框内容全部删掉,使 ...

  4. How to do if the GM MDI cant connect with the software

    When you use GM MDI on your laptop , you may meet some troubles . Such as it cant communicate with t ...

  5. 使用 ffmpeg 转换视频格式

    ffmpeg 是 *nix 系统下最流行的音视频处理库,功能强大,并且提供了丰富的终端命令,实是日常视频处理的一大利器! 实例 flac 格式转 mp3 音频格式转换非常简单: ffmpeg -i i ...

  6. Django框架----Form组件

    Form介绍 我们之前在HTML页面中利用form表单向后端提交数据时,都会写一些获取用户输入的标签并且用form标签把它们包起来. 与此同时我们在好多场景下都需要对用户的输入做校验,比如校验用户是否 ...

  7. URL的解析,C语言实现

    源: URL的解析,C语言实现 c语言实现urlencode和decode

  8. Spring MVC数据绑定

    1.绑定默认数据类型 当前端请求参数较为简单的时候,后台形参可以直接使用SpringMVC提供的参数类型来绑定数据. HttpServletRequest:通过request对象获取请求信息: Htt ...

  9. nginx+php+memcache实现hash一致性memcache 集群

    我们工作中可能会遇到key-value数据库,如果我们面对的不止一台memcache服务器,而是很多台.那么现在就回出现一个问题: 当我们访问nginx服务器的时候,我们会判断memcache中是否有 ...

  10. DOS下读取PCI配置空间信息的汇编程序(通过IOCF8/IOCFC)

    汇编程序编写的读取PCI配置空间信息的代码(通过IOCF8/IOCFC): ;------------------------------------------------ ;功能: 读取PCI 配 ...