思路

裸的第一类斯特林数,思路和CF960G相同

预处理组合数和第一类斯特林数回答即可

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
const long long MOD= 1e9+7;
long long jc[300],inv[300],n,a,b,S_[50100][210];
long long pow(long long a,long long b){
long long ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans%MOD;
}
long long S(long long n,long long k){
if(k==0&&n==0)
return 1;
if(k==0||n==0)
return 0;
if(S_[n][k]!=-1)
return S_[n][k];
return S_[n][k]=(S(n-1,k-1)%MOD+(n-1)*S(n-1,k)%MOD)%MOD;
}
long long C(long long n,long long m){
return jc[n]*inv[m]%MOD*inv[n-m]%MOD;
}
void init(void){
jc[0]=inv[0]=1;
for(int i=1;i<300;i++){
jc[i]=jc[i-1]*i%MOD;
inv[i]=pow(jc[i],MOD-2);
}
}
int T;
signed main(){
memset(S_,-1,sizeof(S_));
init();
scanf("%lld",&T);
while(T--){
scanf("%lld %lld %lld",&n,&a,&b);
if((!a)||(!b)||a+b-2>n-1){
printf("0\n");
continue;
}
if(n==1){
printf("%lld\n",1);
continue;
}
printf("%lld\n",S(n-1,a+b-2)*C(a+b-2,b-1)%MOD);
}
return 0;
}

P4609 [FJOI2016]建筑师的更多相关文章

  1. Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues

    考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...

  2. [洛谷P4609] [FJOI2016]建筑师

    洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...

  3. 洛谷 P4609: [FJOI2016] 建筑师

    本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...

  4. 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】

    题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...

  5. 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)

    题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...

  6. P4609 [FJOI2016]建筑师(第一类斯特林数)

    传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...

  7. LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)

    传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...

  8. 【LG4609】[FJOI2016]建筑师

    [LG4609][FJOI2016]建筑师 题面 洛谷 题解 (图片来源于网络) 我们将每个柱子和他右边的省略号看作一个集合 则图中共有\(a+b-2\)个集合 而原来的元素中有\(n-1\)个(除去 ...

  9. [FJOI2016]建筑师

    题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...

随机推荐

  1. Maven的特点、优点-功能摘要

    Maven功能摘要 以下是Maven的主要特点: 遵循最佳实践的简单项目设置 - 在几秒钟内启动新项目或模块 所有项目的一致使用 - 意味着新开发人员进入项目的时间不会增加 卓越的依赖管理,包括自动更 ...

  2. HTML标签-----article、aside、figure、nav和section

       article    <article> 标签定义独立的内容 <!DOCTYPE html> <html> <head> <meta cha ...

  3. CachedIntrospectionResults 初始化

  4. 使用Hive读取ElasticSearch中的数据

    本文将介绍如何通过Hive来读取ElasticSearch中的数据,然后我们可以像操作其他正常Hive表一样,使用Hive来直接操作ElasticSearch中的数据,将极大的方便开发人员.本文使用的 ...

  5. sqlyog连接Linux上的mysql报错误号码2013,错误号码1130的解决办法

    sqlyog连接Linux上的mysql报错误号码2013,错误号码1130的解决办法 1.报错误号码2013,可能是端口号不是默认的3306,需要改成对应的,检查命令是: [root@host et ...

  6. 抓取https网页时,报错sun.security.validator.ValidatorException: PKIX path building failed 解决办法

    抓取https网页时,报错sun.security.validator.ValidatorException: PKIX path building failed 解决办法 原因是https证书问题, ...

  7. vue之component

    因为组件是可复用的 Vue 实例,所以它们与 new Vue 接收相同的选项,例如 data.computed.watch.methods 以及生命周期钩子等.仅有的例外是像 el 这样根实例特有的选 ...

  8. oracle 如何将一个字段内容拆分多行显示

    例子: select regexp_substr('1,2,3,4,5', '[^,]+', 1, level)from dualconnect by level <= regexp_count ...

  9. Kattis之旅——Prime Reduction

    A prime number p≥2 is an integer which is evenly divisible by only two integers: 1 and p. A composit ...

  10. kafka数据可靠传输

    再说复制Kafka 的复制机制和分区的多副本架构是Kafka 可靠性保证的核心.把消息写入多个副本可以使Kafka 在发生崩愤时仍能保证消息的持久性. Kafka 的主题被分为多个分区,分区是基本的数 ...