P4609 [FJOI2016]建筑师
思路
裸的第一类斯特林数,思路和CF960G相同
预处理组合数和第一类斯特林数回答即可
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
const long long MOD= 1e9+7;
long long jc[300],inv[300],n,a,b,S_[50100][210];
long long pow(long long a,long long b){
long long ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans%MOD;
}
long long S(long long n,long long k){
if(k==0&&n==0)
return 1;
if(k==0||n==0)
return 0;
if(S_[n][k]!=-1)
return S_[n][k];
return S_[n][k]=(S(n-1,k-1)%MOD+(n-1)*S(n-1,k)%MOD)%MOD;
}
long long C(long long n,long long m){
return jc[n]*inv[m]%MOD*inv[n-m]%MOD;
}
void init(void){
jc[0]=inv[0]=1;
for(int i=1;i<300;i++){
jc[i]=jc[i-1]*i%MOD;
inv[i]=pow(jc[i],MOD-2);
}
}
int T;
signed main(){
memset(S_,-1,sizeof(S_));
init();
scanf("%lld",&T);
while(T--){
scanf("%lld %lld %lld",&n,&a,&b);
if((!a)||(!b)||a+b-2>n-1){
printf("0\n");
continue;
}
if(n==1){
printf("%lld\n",1);
continue;
}
printf("%lld\n",S(n-1,a+b-2)*C(a+b-2,b-1)%MOD);
}
return 0;
}
P4609 [FJOI2016]建筑师的更多相关文章
- Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues
考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
- 洛谷 P4609: [FJOI2016] 建筑师
本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
- LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...
- 【LG4609】[FJOI2016]建筑师
[LG4609][FJOI2016]建筑师 题面 洛谷 题解 (图片来源于网络) 我们将每个柱子和他右边的省略号看作一个集合 则图中共有\(a+b-2\)个集合 而原来的元素中有\(n-1\)个(除去 ...
- [FJOI2016]建筑师
题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 n 个建筑,每个建筑的高度是 1 到 n 之间的一个整数. 小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同. ...
随机推荐
- 在lua中从一个字符串中移除空间源码
/* trim.c - based on http://lua-users.org/lists/lua-l/2009-12/msg00951.html from Sean Conner */ #inc ...
- 泛型List、HashTable
从最开始接触的数组,到非泛型集合类(ArrayList.HashTable.Queue.Stack).泛型集合类(List<T>.Dictionary<T>.Queue< ...
- 张春晖让视频的每词每句都可搜索:Autotiming 可以自动配字幕,还将改变哪些领域?
张春晖让视频的每词每句都可搜索:Autotiming 可以自动配字幕,还将改变哪些领域? 对于一些电视观众来说,寻找电视节目字幕中“有趣”的Bug,拍照发到网上与其他人共同嘲笑一下,是一种观看节目之外 ...
- Selenium+Java自动化测试的方法
1.设置等待时间Thread.sleep(2000); (1000代表1s)2.断言assertion:验证应用程序的状态是否同所期望的一致.常见的断言包括:验证页面内容,如标题是否为X或当前位置是否 ...
- 怎样从外网访问内网Lighttpd?
本地安装了一个Lighttpd,只能在局域网内访问,怎样从外网也能访问到本地的Lighttpd呢?本文将介绍具体的实现步骤. 准备工作 安装并启动Lighttpd 默认安装的Lighttpd端口是80 ...
- MyEclipse配置默认自带的HTML/JSP代码格式化
MyEclipse自带默认的HTML/JSP代码格式化并不适合个人开发习惯,因此特意配置如下: 设置行宽为:720(直接加10倍) 使用tabs缩进,单位:1 缩进标签元素要求删除: a开头:a. b ...
- Harmonic Value Description HDU - 5916
The harmonic value of the permutation p1,p2,⋯pn is ∑i=1n−1gcd(pi.pi+1) Mr. Frog is wondering about t ...
- yocto doc
Yocto Project Overview and Concepts Manual https://www.yoctoproject.org/docs/2.6.1/overview-manual/o ...
- springMVC之一(页面<--->控制器 互相传值,转发和重定向)
#页面--->控制器1.request:不建议使用2.使用属性传值(建议使用)@RequestParam("name") String username3.使用Bean对象传 ...
- Machine Learning - Andrew Ng - Coursera
Machine Learning - Andrew Ng - Coursera Contents 1 Notes 1 Notes What is Machine Learning? Two defin ...