Tutorial on GoogleNet based image classification --- focus on Inception module and save/load models
Tutorial on GoogleNet based image classification
2018-06-26 15:50:29
本文旨在通过案例来学习 GoogleNet 及其 Inception 结构的定义。针对这种复杂模型的保存以及读取。
1. GoogleNet 的结构:
class Inception(nn.Module):
def __init__(self, in_planes, kernel_1_x, kernel_3_in, kernel_3_x, kernel_5_in, kernel_5_x, pool_planes):
super(Inception, self).__init__()
# 1x1 conv branch
self.b1 = nn.Sequential(
nn.Conv2d(in_planes, kernel_1_x, kernel_size=1),
nn.BatchNorm2d(kernel_1_x),
nn.ReLU(True),
) # 1x1 conv -> 3x3 conv branch
self.b2 = nn.Sequential(
nn.Conv2d(in_planes, kernel_3_in, kernel_size=1),
nn.BatchNorm2d(kernel_3_in),
nn.ReLU(True),
nn.Conv2d(kernel_3_in, kernel_3_x, kernel_size=3, padding=1),
nn.BatchNorm2d(kernel_3_x),
nn.ReLU(True),
) # 1x1 conv -> 5x5 conv branch
self.b3 = nn.Sequential(
nn.Conv2d(in_planes, kernel_5_in, kernel_size=1),
nn.BatchNorm2d(kernel_5_in),
nn.ReLU(True),
nn.Conv2d(kernel_5_in, kernel_5_x, kernel_size=3, padding=1),
nn.BatchNorm2d(kernel_5_x),
nn.ReLU(True),
nn.Conv2d(kernel_5_x, kernel_5_x, kernel_size=3, padding=1),
nn.BatchNorm2d(kernel_5_x),
nn.ReLU(True),
) # 3x3 pool -> 1x1 conv branch
self.b4 = nn.Sequential(
nn.MaxPool2d(3, stride=1, padding=1),
nn.Conv2d(in_planes, pool_planes, kernel_size=1),
nn.BatchNorm2d(pool_planes),
nn.ReLU(True),
) def forward(self, x):
y1 = self.b1(x)
y2 = self.b2(x)
y3 = self.b3(x)
y4 = self.b4(x)
return torch.cat([y1,y2,y3,y4], 1)
class GoogLeNet(nn.Module):
def __init__(self):
super(GoogLeNet, self).__init__()
self.pre_layers = nn.Sequential(
nn.Conv2d(3, 192, kernel_size=3, padding=1),
nn.BatchNorm2d(192),
nn.ReLU(True),
) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.max_pool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(8, stride=1)
self.linear = nn.Linear(1024, 10) def forward(self, x):
x = self.pre_layers(x)
x = self.a3(x)
x = self.b3(x)
x = self.max_pool(x)
x = self.a4(x)
x = self.b4(x)
x = self.c4(x)
x = self.d4(x)
x = self.e4(x)
x = self.max_pool(x)
x = self.a5(x)
x = self.b5(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.linear(x)
return x
2. 保存和加载模型:
# 保存和加载整个模型
torch.save(model_object, 'model.pkl')
model = torch.load('model.pkl') # 仅保存和加载模型参数(推荐使用)
torch.save(model_object.state_dict(), 'params.pkl')
model_object.load_state_dict(torch.load('params.pkl'))
Tutorial on GoogleNet based image classification --- focus on Inception module and save/load models的更多相关文章
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- 图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification
ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories Am ...
- Codeforces Round #591 (Div. 2, based on Technocup 2020 Elimination Round 1) C. Save the Nature【枚举二分答案】
https://codeforces.com/contest/1241/problem/C You are an environmental activist at heart but the rea ...
- Codeforces Round #591 (Div. 2, based on Technocup 2020 Elimination Round 1) C. Save the Nature
链接: https://codeforces.com/contest/1241/problem/C 题意: You are an environmental activist at heart but ...
- How to Build Android Applications Based on FFmpeg by An Example
This is a follow up post of the previous blog How to Build FFmpeg for Android. You can read the pre ...
- 解读(GoogLeNet)Going deeper with convolutions
(GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包 ...
- [论文阅读]Going deeper with convolutions(GoogLeNet)
本文采用的GoogLenet网络(代号Inception)在2014年ImageNet大规模视觉识别挑战赛取得了最好的结果,该网络总共22层. Motivation and High Level Co ...
- Node.js NPM Tutorial: Create, Publish, Extend & Manage
A module in Node.js is a logical encapsulation of code in a single unit. It's always a good programm ...
- Plant Leaves Classification植物叶子分类:基于孪生网络的小样本学习方法
目录 Abstract Introduction PROPOSED CNN STRUCTURE INITIAL CNN ANALYSIS EXPERIMENTAL STRUCTURE AND ALGO ...
随机推荐
- clientWidth,offsetWidth,scrollWidth区别
<html> <head> <title>clientWidth,offsetWidth,scrollWidth区别</title> </head ...
- hdu2609最小表示法
#include <iostream> #include <algorithm> #include <string.h> #include <cstdio&g ...
- IIS8无法通过IP访问解决办法
今天配置在Windows server 2012 R2 上配置IIS8时,出现局域网内无法使用IP访问站点的问题,查找资料依然无法解决.最后发现IIS8配置好主机名后无法使用主机IP访问站点,只能使用 ...
- 【转】基于Selenium的web自动化框架(python)
1 什么是selenium Selenium 是一个基于浏览器的自动化工具,它提供了一种跨平台.跨浏览器的端到端的web自动化解决方案.Selenium主要包括三部分:Selenium IDE.Sel ...
- asp.net web form 的缺点
与mvc相比,web form 的缺点: 代码架构麻烦. 以页面或控件为单位,把逻辑放在了一起,代码架构简单.平铺直叙,修改.维护比较麻烦. 不方便单元测试. 功能堆加在了一起,不方便对单个的功能进 ...
- 【Hadoop学习之十二】MapReduce案例分析四-TF-IDF
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 概念TF-IDF(term fre ...
- Extjs4前端开发代码规范参考
准则: 一致性, 隔离与统一管理, 螺旋式重构改进, 消除重复, 借鉴现有方案 1. 保证系统实现的一致性,寻求一致性方案, 相同或相似功能尽量用统一模式处理: 2. 尽可能使用隔离技术 ...
- restful的特点
1. 资源(Resources) REST的名称”表现层状态转化”中,省略了主语.”表现层”其实指的是”资源”(Resources)的”表现层”. 所谓”资源”,就是网络 ...
- android排除报很多错方法 Execution failed for task ':app:compileDebugJavaWithJavac' in Android Studio
android排除报很多错方法1.回撤对应layout的xml改动2.回撤对应java的改动3.重命名文件后导致的资源不对应 Execution failed for task ':app:compi ...
- arcgis desktop 地理编码服务发布
1.创建地址定位器 2.创建复合地址定位器 3.鼠标右键,共享为,地理编码服务.