Problem Description

任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;
2、  一共有3堆石子,数量分别是m, n, p个;
3、  两人轮流走;
4、  每走一步可以选择任意一堆石子,然后取走f个;
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

Input

输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。

Output

如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。

Sample Input

1 1 1

1 4 1

0 0 0

Sample Output

Fibo

Nacci

SG函数和SG定理的模板题

不懂什么是SG函数的去看看大神的详解⑧

#include<bits/stdc++.h>
using namespace std;
#define memset(x,y) memset(x,y,sizeof(x))
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
typedef long long ll;
const int maxn = ;
int f[];
int sg[maxn];
int vis[maxn];
void getSG(int n){
memset(sg,);
for(int i = ; i <= n; i++){
memset(vis,);
for(int j = ; f[j] <= i; j++){
vis[sg[i - f[j]] ] = ;
}
for(int j = ; j <= n; j++){
if(!vis[j]) {
sg[i] = j;
break;
}
}
}
}
void fb(){
f[] = ;
f[] = ;
for(int i = ; i<= ; i++)
f[i] = f[i - ] + f[i - ] ;
}
int m,n,p;
int main(){
fb();
getSG();
while(read3(n,m,p)){
if(n == && m == && p == ) break;
if(sg[n] ^ sg[m] ^ sg[p]) printf("Fibo\n");
else printf("Nacci\n");
}
}

HDU 1848 Fibonacci again and again【博弈SG】的更多相关文章

  1. hdu 1848 Fibonacci again and again(SG函数)

    Fibonacci again and again HDU - 1848 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)= ...

  2. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  3. hdu 1848 Fibonacci again and again(简单sg)

    Problem Description 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1)=1;F(2)=2;F(n)=F(n-1)+F(n-2 ...

  4. hdu 1848 Fibonacci again and again(sg)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  5. HDU 1848 Fibonacci again and again(SG函数入门)题解

    思路:SG打表 参考:SG函数和SG定理[详解] 代码: #include<queue> #include<cstring> #include<set> #incl ...

  6. hdu 1848 Fibonacci again and again (SG)

    题意: 3堆石头,个数分别是m,n,p. 两个轮流走,每走一步可以选择任意一堆石子,然后取走f个.f只能是菲波那契中的数(即1,2,3,5,8.....) 取光所有石子的人胜. 判断先手胜还是后手胜. ...

  7. HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)

    Fibonacci again and again Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & ...

  8. HDU 1848 Fibonacci again and again SG函数做博弈

    传送门 题意: 有三堆石子,双方轮流从某堆石子中去f个石子,直到不能取,问先手是否必胜,其中f为斐波那契数. 思路: 利用SG函数求解即可. /* * @Author: chenkexing * @D ...

  9. HDU 1848 Fibonacci again and again(SG函数)

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

随机推荐

  1. Minecraft 1.8.9 FML Mod 开发教程

    Mod开发教程 https://fmltutor.ustc-zzzz.net/

  2. 记前些日子archlinux更新后无法调节声音的解决方法

    桌面环境用的是xfce4. 自从某次更新过后,panel中调节声音的插件变成了 xfce4-pulseaudio-plugin.然后就发现在panel中无法调节声音了. 在这个插件的属性中发现了一项设 ...

  3. centos下mysql 5源码安装全过程记录

    参考:http://blog.csdn.net/mycwq/article/details/24488691 安装cmake,mysql 5.5以后的版本要通过cmake进行编译 在新装的CentOS ...

  4. Vue系列之 => 组件中的data和methods

    使用data <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...

  5. Spring Cloud 服务的注册与发现(Eureka)

    Eureka服务注册中心 一.Eureka Server Eureka Server是服务的注册中心,这是分布式服务的基础,我们看看这一部分如何搭建. 首先,Spring Cloud是基于Spring ...

  6. Yii2 nginx配置伪静态

    Yii2 配置 Nginx 伪静态 主要检查以下代码: location / { # Redirect everything that isn't a real file to index.php t ...

  7. tetrahedron (公式)

    我是直接搬运了某大佬的代码,毕竟我不清楚如何计算这个东西. 其中四点共面的求法就是体积为0,然后圆心和半径就公式了. #include<cstdio> #include<iostre ...

  8. 20155228 实验五 Android开发基础

    20155228 实验五 Android开发基础 实验内容 1.掌握Socket程序的编写: 2.掌握密码技术的使用: 3.设计安全传输系统. 实验要求 1.没有Linux基础的同学建议先学习< ...

  9. jack welch:“你们知道了,但是我们做到了”

    一.我们发现,只要我们敢于相信自己,敢于朝着那些看似不可能的目标不懈努力,最终会如愿以偿,个人的领袖形象也将因此而确立. 二.一个领导者必须要有魄力.对我来说,这就是一个人能否领导一项业务的分水岭. ...

  10. Flask的请求对象--request

    request-Flask的请求对象 请求解析和响应封装大部分是有Werkzeug完成的,Flask子类化Werkzeug的请求(Request)对象和响应(Response)对象,并添加了和程序的特 ...