1中,我们的求解问题是:$min_{w,b}$ $\frac{1}{2}||w||^{2}$,使得$y^{(i)}(w^{T}x^{(i)}+b)\geq 1 ,1 \leq i \leq n$

设$g_{i}(w)=-y^{(i)}(w^{T}x^{(i)}+b)+1 \leq 0$,

那么按照2中的定义,对应的拉格朗日函数为$L(w,b,\alpha)=\frac{1}{2}||w||^{2}-\sum_{i=1}^{n}\alpha_{i}[y^{(i)}(w^{T}x^{(i)}+b)-1]$

这里我们这里面没有$\beta$,因为没有$h$。

那么按照2中的定义有:
(1)$ \frac{\partial}{\partial w}L(w,b,\alpha)=w-\sum_{i=1}^{n}\alpha_{i}y^{(i)}x^{(i)}=0$
(2)$ \frac{\partial}{\partial b}L(w,b,\alpha)=\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$

由(1)得$w=\sum_{i=1}^{n}\alpha_{i}y^{(i)}x^{(i)}$,将其带入$L(w,b,\alpha)$的表达式,化简得到:$L(w,b,\alpha)=\sum_{i=1}^{n}\alpha_{i}-\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\alpha_{j}(x^{(i)})^{T}x^{(j)}-b\sum_{i=1}^{n}\alpha_{i}y^{(i)}$
由(2)得$\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$,所以最后式子为$L(w,b,\alpha)=\sum_{i=1}^{n}\alpha_{i}-\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\alpha_{j}(x^{(i)})^{T}x^{(j)}$

现在这个式子里只有$\alpha$是未知数。这里我们要说明一点,这里我们其实将问题转成了它的对偶问题,也就是说我们的目标是求解2中所说的$d^{*}$。所以我们的目标是:
$\underset{\alpha}{max}W(\alpha)=\sum_{i=1}^{n}\alpha_{i}-\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\alpha_{j}(x^{(i)})^{T}x^{(j)}$,使得满足(1)$\alpha_{i}\geq 0,1 \leq i \leq n$,(2)$\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$

我们将最大化变为最小化,
$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\alpha_{j}(x^{(i)})^{T}x^{(j)}-\sum_{i=1}^{n}\alpha_{i}$,使得满足(1)$\alpha_{i}\geq 0,1 \leq i \leq n$,(2)$\sum_{i=1}^{n}\alpha_{i}y^{(i)}=0$

此时,假设我们求出了$\alpha^{*}$(我们将在后面说如何求$\alpha$),那么可以通过$w^{*}=\sum_{i=1}^{n}\alpha_{i}y^{(i)}x^{(i)}$求出$w$。现在看如何求b。由于b只是一个截距,所以$w^{*}$一旦确定,那么就确定了一个平面簇,b只是一个偏移,所以当平面偏移到两类点的中间时最好,所以b的求解公式为:$b^{*}=- \frac{ \underset{i:y^{(i)}=-1}{max}(w^{*})^{T}x_{(i)}+ \underset{i:y^{(i)}=1}{min}(w^{*})^{T}x_{(i)}}{2}$

SVM学习笔记3-问题转化的更多相关文章

  1. SVM学习笔记(一)

    支持向量机即Support Vector Machine,简称SVM.一听这个名字,就有眩晕的感觉.支持(Support).向量(Vector).机器(Machine),这三个毫无关联的词,硬生生地凑 ...

  2. SVM学习笔记

    一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...

  3. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  4. SVM学习笔记(一):libsvm参数说明(转)

    LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...

  5. SVM学习笔记-线性支撑向量机

    对于PLA算法来说,最终得到哪一条线是不一定的,取决于算法scan数据的过程. 从VC bound的角度来说,上述三条线的复杂度是一样的 Eout(w)≤Ein0+Ω(H)dvc= ...

  6. SVM学习笔记5-SMO

    首先拿出最后要求解的问题:$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\a ...

  7. SVM学习笔记4-核函数和离群点的处理

    核函数在svm里,核函数是这样定义的.核函数是一个n*n(样本个数)的矩阵,其中:$K_{ij}=exp(-\frac{||x^{(i)}-x^{(j)}||^{2}}{2\sigma ^{2}})$ ...

  8. SVM学习笔记1-问题定义

    问题定义: 给出一些样本,包含两类.svm试图找到一个超平面,将数据分开,并且每种样本到超平面的距离的最小值最大. 输入样本:$\{x_{i},y_{i}| 1\leq i\leq n \}$,$y_ ...

  9. Python学习笔记:出生日期转化为年龄

    在数据挖掘项目中,有时候个体的出生日期包含信息量过大,不适合作为一个有效数据进入模型算法训练,因此有必要把出生日期转化为年龄age,age是一个很好的特征工程指示变量. import pandas a ...

随机推荐

  1. MACD各分时背离所对应的时间

    MACD各分时背离所对应的时间 5分钟背离结构——2小时.           15分钟背离结构——一天半(6小时).           30分钟背离结构——3天(12小时).            ...

  2. 编写带有下列声明的例程:第一个例程是个驱动程序,它调用第二个例程并显示String str中的字符的所有排列。例如,str是"abc", 那么输出的串则是abc,acb,bac,bca,cab,cba,第二个例程使用递归。

    全排列在笔试面试中很热门,因为它难度适中,既可以考察递归实现,又能进一步考察非递归的实现,便于区分出考生的水平.所以在百度和迅雷的校园招聘以及程序员和软件设计师的考试中都考到了,因此本文对全排列作下总 ...

  3. React项目中使用Mobx状态管理(一)

    1.安装 $ yarn add mobx mobx-react 2.新建store/index.js,存放数据(以下思路仅限于父子组件的简单应用) 注意:这里暂时没使用装饰器@observable,装 ...

  4. Java基础(basis)-----代码块详解

    1.静态代码块 格式: static{ 内容..... } 随着类的加载而加载,而且只被加载一次 多个静态代码块之间按照顺序结构执行 优先其他各种代码块以及构造函数先执行 静态的代码块中只能执行静态的 ...

  5. <keep-alvie></keep-alive>

    <keep-alive></keep-alive>的作用是什么? <keep-alive></keep-alive> 包裹动态组件时,会缓存不活动的组件 ...

  6. superblock 区块数据读取

    鸟哥私房菜笔记: 命令:df -Th Filesystem:代表该文件系统是在哪个 partition ,所以列出设备名称:1k-blocks:说明下面的数字单位是 1KB 呦!可利用 -h 或 -m ...

  7. Linux下实现免密登录

    过程如下: 1.Linux下生成密钥 通过命令”ssh-keygen -t rsa“ 2.1 通过ssh-copy-id的方式 命令: ssh-copy-id -i ~/.ssh/id_rsa.put ...

  8. hive 常见时间日期函数的使用

    1.时间戳函数 日期转时间戳:从1970-01-01 00:00:00 UTC到指定时间的秒数 获得当前时区的UNIX时间戳: select unix_timestamp(); 1533716607 ...

  9. limit小结

    1. Limit接受一个或两个数字参数.参数必须是一个整数常量.如果给定两个参数,第一个参数指定第一个返回记录行的偏移量,第二个参数指定返回记录行的最大数目. 2. 初始记录行的偏移量是 0(而不是 ...

  10. MongoDB With Spark遇到的2个错误,不能初始化和sample重复的key

    1.$sample stage could not find a non-duplicate document while using a random cursor 这个问题比较难解决,因为我用mo ...