宇电的设备使用基于RS-485的自定义协议,协议本身比较简单,只有2条指令:

读:地址代号+52H(82) +要读的参数代号+0+0+校验码

写:地址代号+43H(67)+要写的参数代号+写入数低字节+写入数高字节+校验码

校验码采用 16 位求和校验方式,其中读指令的校验码计算方法为:要读参数的代号×256+82+ADDR。

写指令的校验码计算方法为以下公式做 16 位二进制加法计算得出的余数(溢出部分不处理):要写的参数代号×256+67+要写的参数值+ADDR。

返回的数据格式更是固定的,无论是读还是写,仪表都返回以下10个字节数据:测量值 PV+给定值 SV+输出值 MV 及报警状态+所读/写参数值+校验码。

其中 PV、 SV 及所读参数值均各占 2 个字节,代表一个 16 位二进制有符号补码整数,低位字节在前,高位字节在后,整数无法表示小数点,要求用户在上位机处理; MV 占一个字节,按 8 位有符号二进制数格式,数值范围-110~+110,状态位占一个字节,校验码占 2 个字节,共 10 个字节。

而返回的校验码计算则是:PV+SV+(报警状态*256+MV)+参数值+ADDR。清楚协议的这些规则后,编写程序只是顺理成章的事。直接上代码:

/*读取目标设备的参数值*/

void ReadAiBusDeviceParameter(uint8_t deviceAddr,uint8_t paraAddr,void (*AiBusSendByte)(uint8_t *,uint16_t))

{

  uint8_t readCommand[INSTRUCTION_LENGTH];

  uint16_t index=;

  readCommand[index++]=0x80+deviceAddr;

  readCommand[index++]=0x80+deviceAddr;

  readCommand[index++]=READ_INSTRUCTION;

  readCommand[index++]=paraAddr;

  readCommand[index++]=0x0;

  readCommand[index++]=0x0;

  uint16_t checkSum=(uint16_t)paraAddr*+READ_INSTRUCTION+(uint16_t)deviceAddr;

  readCommand[index++]=checkSum;

  readCommand[index++]=(checkSum>>);

  AiBusSendByte(readCommand,INSTRUCTION_LENGTH);

}

/*设置目标设备的参数值*/

void WriteAiBusDeviceParameter(uint8_t deviceAddr,uint8_t paraAddr,uint16_t data,void (*AiBusSendByte)(uint8_t *,uint16_t))

{

  uint8_t writeCommand[INSTRUCTION_LENGTH];

  uint16_t index=;

  writeCommand[index++]=0x80+deviceAddr;

  writeCommand[index++]=0x80+deviceAddr;

  writeCommand[index++]=WRITE_INSTRUCTION;

  writeCommand[index++]=paraAddr;

  writeCommand[index++]=data;

  writeCommand[index++]=(data>>);

  uint16_t checkSum=(uint16_t)paraAddr*+WRITE_INSTRUCTION+(uint16_t)deviceAddr+data;

  writeCommand[index++]=checkSum;

  writeCommand[index++]=(checkSum>>);

  AiBusSendByte(writeCommand,INSTRUCTION_LENGTH);

}

/*解析返回数据,返回值为读或者写的参数值*/

int ParsingReturnData(uint8_t *receiveData,uint16_t *returnData,uint8_t *deviceAddr,uint16_t deviceNum)

{

  int status=-;

  uint16_t pValue=;

  uint16_t sValue=;

  uint16_t mValue=;

  uint16_t alarmStatus=;

  uint16_t paraValue=;

  uint16_t checkSum=;

  pValue=receiveData[]+receiveData[]*;

  sValue=receiveData[]+receiveData[]*;

  mValue=(uint16_t)receiveData[];

  alarmStatus=(uint16_t)receiveData[];

  paraValue=receiveData[]+receiveData[]*;

  checkSum=receiveData[]+receiveData[]*;

  uint16_t chk=pValue+sValue+alarmStatus*+mValue+paraValue;

  for(int i=;i<deviceNum;i++)

  {

    if(checkSum==chk+deviceAddr[i])

    {

      status=i;

      returnData[]=pValue;

      returnData[]=sValue;

      returnData[]=mValue;

      returnData[]=alarmStatus;

      returnData[]=paraValue;

      break;

    }

  }

  return status;

}

STM32应用实例七:与宇电设备实现AI-BUS通讯的更多相关文章

  1. STM32应用实例六:与MS5837压力传感器的I2C通讯

    MS5837压力传感器是一种可用于电路板上,适用于检测10-1200mbar压力范围的传感器,灵敏度非常高,理论上能够检测到0.01mbar的压力变化,实际使用过程中测试并无明显的变化. MS5837 ...

  2. C语言库函数大全及应用实例七

    原文:C语言库函数大全及应用实例七 [编程资料]C语言库函数大全及应用实例七 函数名: getw 功 能: 从流中取一整数 用 法: int getw(FILE *strem); 程序例: #i nc ...

  3. STM32应用实例八:与多台MS5803压力传感器I2C通讯

    MS5803压力传感器支持SPI和I2C总线通讯,拥有24位AD转换.能够同时获得压力值和温度值,其中压力测量范围为10-1100mbar,温度的测量范围是-40-85摄氏度.各引脚功能及参数如下: ...

  4. STM32学习笔记(七) ADC模数转换测电平(普通和DMA模式)

    嵌入式系统在微控制领域(温度,湿度,压力检测,四轴飞行器)中占据着重要地位,这些功能的实现是由微处理器cpu(如stm32)和传感器以及控制器共同完成的,而连接他们,使它们能够互相正常交流的正是本小节 ...

  5. STM32应用实例十:简析STM32 I2C通讯死锁问题

    I2C接口是一种使用非常普遍的MCU与外部设备的接口方式,在STM32中也集成了I2C接口,我们也常常使用它来与外围的传感器等设备通讯. 最近在我们使用STM32F1VET6读取压力和温湿度传感器数据 ...

  6. python实例七

    https://www.cnblogs.com/evablogs/p/6791548.html 题目:将一个列表的数据复制到另一个列表中. 程序分析:打算利用for循环和append函数来复制到另一个 ...

  7. STM32应用实例十五:STM32的ADC通道间干扰的问题

    最近我们在开发一个项目时,用到了MCU自带的ADC,在调试过程中发现通道之间村在相互干扰的问题.以前其实也用过好几次,但要求都不高所以没有太关注,此次因为物理量的量程较大,所以看到了变化. 首先来说明 ...

  8. STM32应用实例十四:利用光敏二极管实现光度测量

    最近我们在开发臭氧发生器时,需要监测生成的臭氧的浓度,于是想到使用光度计来测量.因为不同浓度的臭氧对管的吸收作用是不相同的,于是检测光照强度的变化就可以得到相应的浓度数据. 1.硬件设计 此次光照度检 ...

  9. STM32应用实例十一:基于SPI和AD7192的数据采集

    在开发臭氧发生器的时,我们需要一个高分辨率的AD采集,于是选择了AD7192,选择这款ADC的原因比较简单.首先它是24位的符合我们的精度要求:其次它自带时钟,便于节省空间:第三他又4路单端或2路差分 ...

随机推荐

  1. img标签浏览器缓存图片问题

    问题:项目中用的img标签及其src属性,但是发现浏览器会缓存图片,这样每次如果修改了图片,再重新打开预览发现图片还是原来的. 原因:因为src后面的请求路径不变,所以浏览器就认为是同一个图片,就不会 ...

  2. toogle

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. array_values

    $a = array( "Name" => "Peter", ", "Country" => "USA&qu ...

  4. RIP配置详解

    RIP配置详解 一.RIP协议概述 1.RIP是Routing Information Protocol(路由信息协议)的简称: 2.RIP是一种基于距离矢量(Distance-Vector)算法的路 ...

  5. Neural Networks and Deep Learning(week3)Planar data classification with one hidden layer(基于单隐藏层神经网络的平面数据分类)

    Planar data classification with one hidden layer 你会学习到如何: 用单隐层实现一个二分类神经网络 使用一个非线性激励函数,如 tanh 计算交叉熵的损 ...

  6. Parent Proxy 和 Origin Server配置学习

    Parent Proxy Configuration proxy.config.http.parent_proxy_routing_enable 开启/关闭parent caching: proxy. ...

  7. .NET面试题系列(十)委托与事件

    委托 有了委托的存在,使得方法可以作为参数传递给另一个方法. int Max(int x,int y) { return x>y?x:y; } int Min(int x,int y) { re ...

  8. 攻击WEP加密无线网络

    1.介绍 针对客户端环境和无客户端环境下破解WEP的几类方法. 有客户端环境: 一般当前无线网络中存在活动的无线客户端环境,即有用户通过无线连接到无线AP上并正在进行上网等操作时. 无客户端环境: 1 ...

  9. [C++]Linux之Ubuntu下编译C程序出现错误:“ stray ‘\302'或者'\240' in program”的解决方案

    参考文献:[error: stray ‘\240’ in program或 error: stray ‘\302’ in program](http://blog.csdn.net/u01299585 ...

  10. luogu P1593 因子和

    不要吐槽博主总做这些数论氵题 首先我们看到这种因数问题,果断质因数分解 所以当前数\(a=p_1^{k_1}*p_2^{k_2}...*p_m^{k_m}\) 可得\(a^b=p_1^{k_1*b}* ...