Topcoder SRM590 Fox And City
Problem Statement |
|
| There is a country with n cities, numbered 0 through n-1. City 0 is the capital. The road network in the country forms an undirected connected graph. In other words: Some pairs of cities are connected by bidirectional roads. For every city there is at least one sequence of consecutive roads that leads from the city to the capital. (Whenever two roads need to cross outside of a city, the crossing is done using a bridge, so there are no intersections outside of the cities.) You are given a String[] linked that describes the road network. For each i and j, linked[i][j] is 'Y' if the cities i and j are already connected by a direct road, and it is 'N' otherwise. The distance between two cities is the smallest number of roads one needs to travel to get from one city to the other. The people living outside of the capital are usually unhappy about their distance from the capital. You are also given a int[] want with n elements. For each i, want[i] is the desired distance between city i and the capital (city 0). Fox Ciel is in charge of building new roads. Each new road must again be bidirectional and connect two cities. Once the new roads are built, the citizens will evaluate how unhappy they are with the resulting road network: For each i: Let real[i] be the new distance between city i and the capital. Then the people in city i increase the unhappiness of the country by (want[i] - real[i])^2. Return the minimal total unhappiness Ciel can achieve by building some (possibly zero) new roads. | |
题目大意:给定n个点的无向图,边权均为1,每个点有一个属性wi,现在可以在图中任意加边,记加边后每个点到1号点的距离为di,最小化Σ(wi - di)^2.
样例:
Sample Input
3
NYN
YNY
NYN
0 1 1
4
NYNN
YNYN
NYNY
NNYN
0 3 3 3
6
NYNNNY
YNYNNN
NYNYNN
NNYNYN
NNNYNY
YNNNYN
0 2 2 2 2 2
3
NYY
YNN
YNN
0 0 0
6
NYNNNN
YNYNNN
NYNYYY
NNYNYY
NNYYNY
NNYYYN
0 1 2 3 0 3
6
NYNNNN
YNYNNN
NYNYYY
NNYNYY
NNYYNY
NNYYYN
0 1 2 4 0 4
11
NYNYYYYYYYY
YNYNNYYNYYY
NYNNNYYNYYN
YNNNYYYYYYY
YNNYNYYYNYY
YYYYYNNYYNY
YYYYYNNNYYY
YNNYYYNNNYY
YYYYNYYNNNY
YYYYYNYYNNY
YYNYYYYYYYN
0 1 2 0 0 5 1 3 0 2 3
Sample Output
0
5
2
3
6
28
分析:综合了许多知识的好题.
题目说可以任意加边,那么是不是就意味着每个点的最短路都是任意的呢? 显然不是的,考虑确定每个点的最短路有什么限制.
首先,d1 = 0. 然后对于任意有边的一对点(i,j),|di - dj| ≤ 1. 现在要求满足上述限制的最值.
这其实就是个离散变量模型,和bzoj3144类似. 先拆点,S向i号点拆出的0号点连容量为inf的边,i号点拆出的n-1号点向T连容量为inf的边. i号点拆出的k号点向k+1号点连容量为(a[i] - k - 1) ^ 2的边.
对于有限制的点对(i,j),i拆出的第k个点向j拆出的第k-1个点连容量为inf的边,j连i也同样如此.
还没完.必须保证d1 = 0.那么1拆出的第k个点向第k+1个点的边就不能被割. 将其容量变成inf就好了. 但是这样会存在一个问题:ST总是连通的. 因为S到T总是可以经过1号点拆出的点,这条路径上的每条边的容量都是inf,割不掉.
怎么解决呢?去掉S与1号点拆出的第一个点的连边就好了.
不断调整,满足最小割的要求,同时使得答案合理,这是最小割模型建图的一般分析方法.
同时这道题融合了最短路问题的一些技巧,例如hdu5385,每个点到源点的最短路都和与它相连的点的最短路有关.
#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ,inf = 0x7fffffff;
int n,a[],id[][],cnt,head[maxn],to[maxn],nextt[maxn],w[maxn],tot = ;
int d[maxn],S,T,ans;
char s[][]; void add(int x,int y,int z)
{
w[tot] = z;
to[tot] = y;
nextt[tot] = head[x];
head[x] = tot++; w[tot] = ;
to[tot] = x;
nextt[tot] = head[y];
head[y] = tot++;
} bool bfs()
{
memset(d,-,sizeof(d));
d[S] = ;
queue <int> q;
q.push(S);
while (!q.empty())
{
int u = q.front();
q.pop();
if (u == T)
return true;
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
if (w[i] && d[v] == -)
{
d[v] = d[u] + ;
q.push(v);
}
}
}
return false;
} int dfs(int u,int f)
{
if (u == T)
return f;
int res = ;
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
if (w[i] && d[v] == d[u] + )
{
int temp = dfs(v,min(f - res,w[i]));
w[i] -= temp;
w[i ^ ] += temp;
res += temp;
if (res == f)
return res;
}
}
if (!res)
d[u] = -;
return res;
} void dinic()
{
while(bfs())
ans += dfs(S,inf);
} int main()
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
scanf("%s",s[i] + );
for (int k = ; k <= n - ; k++)
for (int i = ; i <= n; i++)
id[i][k] = ++cnt;
S = cnt + ;
T = S + ;
add(id[][n - ],T,inf);
for (int i = ; i <= n; i++)
add(S,id[i][],inf),add(id[i][n - ],T,inf);
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
{
if (s[i][j] == 'Y')
{
for (int k = ; k <= n - ; k++)
add(id[i][k],id[j][k - ],inf);
}
}
for (int i = ; i <= n; i++)
{
int x;
scanf("%d",&x);
for (int j = ; j <= n - ; j++)
add(id[i][j],id[i][j + ],(i == ? inf : (x - j - ) * (x - j - )));
}
dinic();
printf("%d\n",ans); return ;
}
Topcoder SRM590 Fox And City的更多相关文章
- Topcoder SRM 590 Fox And City
Link 注意到原图给的是一个无向连通图. 如果在原图中两点之间有一条无向边,那么这两点到\(1\)的距离之差不大于\(1\). 这个命题的正确性是显然的,我们考虑它的逆命题: 给定每个点到\(1\) ...
- HDU.5385.The path(构造)
题目链接 最短路构造题三连:这道题,HDU4903,SRM590 Fox And City. \(Description\) 给定一张\(n\)个点\(m\)条边的有向图,每条边的边权在\([1,n] ...
- 未A,或用水法,或不熟的题
今天是2017.11.25 1. 用栈实现dfs JZOJ_senior 3467 2. 链表加堆或线段树乱搞 JZOJ_senior 3480 3. 求每个边所在的奇环.偶环 JZOJ_senior ...
- TopCoder SRM 590
第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement Fox Ciel is going to play Gomoku with her friend ...
- Topcoder 练习小记,Java 与 Python 分别实现。
Topcoder上的一道题目,题目描述如下: Problem Statement Byteland is a city with many skyscrapers, so it's a pe ...
- [TopCoder] SRM_594_DIV2.250
好长一段时间没写博客了,实在是想不出有什么好写的.近期也有对自己的职业做了一点思考,还是整理不出个所以然来,很是烦躁 ... 研究TopCoder已经有一小段时间了,都是在做之前的题目,还没有实际参加 ...
- TopCoder入门
TopCoder入门 http://acmicpc.info/archives/164?tdsourcetag=s_pctim_aiomsg 本文根据经典的TC教程完善和改编.TopCoder:htt ...
- BZOJ 2001: [Hnoi2010]City 城市建设
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1132 Solved: 555[Submit][ ...
- History lives on in this distinguished Polish city II 2017/1/5
原文 Some fresh air After your time underground,you can return to ground level or maybe even a little ...
随机推荐
- /etc/my.cnf
[client] default-character-set=utf8 [mysqld] tmp_table_size = 2048M max_heap_table_size = 2048M max_ ...
- Windows10 + Visual Studio 2017 + CMake +OpenCV编译、开发环境配置及测试
由于最近需要使用OpenCV,本人需要在自己的PC上使用OpenCV,因此最近一直在研究如何使用Visual Studio编译OpenCV源代码并搭建开发环境,折腾了很长时间,查阅了很多相关资料,终于 ...
- igmpproxy启动时错误:There must be at least 2 Vif's where one is upstream.
openwrt 下启动igmpproxy时报错 # /etc/init.d/igmpproxy start Not starting instance igmpproxy::instance1, an ...
- Day5-----------------------系统监控
1.top 命令 查看终端信息 who 显示终端用户有哪些 bash 开启终端进程 PID:进程身份证 buffer:缓冲区 cache:高速缓存 进程:动起来的文件,CPU调用运行的过程 2.fre ...
- Mac安装Homebrew记录
在终端输入: ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install) ...
- Oracle 11g服务器安装详细步骤——图文教程(系统 windows server 2012 R2)
Oracle 11g服务器安装的相关问题,下面小编就带大家一起来下载.安装. 方法/步骤 1 大家可以根据自己的操作系统是多少位(32位或64位)的,到官网下载相应的安装程序,如下图所示. 有一点需要 ...
- OCM_第九天课程:Section4—》OCM课程环境搭建
注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...
- linux 终端上网设置
原网址: https://www.aliyun.com/jiaocheng/215068.html 摘要:第一步,需要安装一个名为w3m的软件工具,打开终端,输入如下命令sudoapt-getinst ...
- php文件路径获取文件名
物理截取: $file = '/www/htdocs/inc/lib.inc.php'; $filename = basename($file); echo $filename, '<br/&g ...
- docker 运行Django项目
一.概述 已经写好了一个Django项目,需要将这个项目用docker封装一个镜像,使用k8s发布! 在封装并运行的过程中,发现了很多问题,这里会一一介绍! 二.时区问题 采用的是镜像是 ubuntu ...