Topcoder SRM590 Fox And City
Problem Statement |
|
| There is a country with n cities, numbered 0 through n-1. City 0 is the capital. The road network in the country forms an undirected connected graph. In other words: Some pairs of cities are connected by bidirectional roads. For every city there is at least one sequence of consecutive roads that leads from the city to the capital. (Whenever two roads need to cross outside of a city, the crossing is done using a bridge, so there are no intersections outside of the cities.) You are given a String[] linked that describes the road network. For each i and j, linked[i][j] is 'Y' if the cities i and j are already connected by a direct road, and it is 'N' otherwise. The distance between two cities is the smallest number of roads one needs to travel to get from one city to the other. The people living outside of the capital are usually unhappy about their distance from the capital. You are also given a int[] want with n elements. For each i, want[i] is the desired distance between city i and the capital (city 0). Fox Ciel is in charge of building new roads. Each new road must again be bidirectional and connect two cities. Once the new roads are built, the citizens will evaluate how unhappy they are with the resulting road network: For each i: Let real[i] be the new distance between city i and the capital. Then the people in city i increase the unhappiness of the country by (want[i] - real[i])^2. Return the minimal total unhappiness Ciel can achieve by building some (possibly zero) new roads. | |
题目大意:给定n个点的无向图,边权均为1,每个点有一个属性wi,现在可以在图中任意加边,记加边后每个点到1号点的距离为di,最小化Σ(wi - di)^2.
样例:
Sample Input
3
NYN
YNY
NYN
0 1 1
4
NYNN
YNYN
NYNY
NNYN
0 3 3 3
6
NYNNNY
YNYNNN
NYNYNN
NNYNYN
NNNYNY
YNNNYN
0 2 2 2 2 2
3
NYY
YNN
YNN
0 0 0
6
NYNNNN
YNYNNN
NYNYYY
NNYNYY
NNYYNY
NNYYYN
0 1 2 3 0 3
6
NYNNNN
YNYNNN
NYNYYY
NNYNYY
NNYYNY
NNYYYN
0 1 2 4 0 4
11
NYNYYYYYYYY
YNYNNYYNYYY
NYNNNYYNYYN
YNNNYYYYYYY
YNNYNYYYNYY
YYYYYNNYYNY
YYYYYNNNYYY
YNNYYYNNNYY
YYYYNYYNNNY
YYYYYNYYNNY
YYNYYYYYYYN
0 1 2 0 0 5 1 3 0 2 3
Sample Output
0
5
2
3
6
28
分析:综合了许多知识的好题.
题目说可以任意加边,那么是不是就意味着每个点的最短路都是任意的呢? 显然不是的,考虑确定每个点的最短路有什么限制.
首先,d1 = 0. 然后对于任意有边的一对点(i,j),|di - dj| ≤ 1. 现在要求满足上述限制的最值.
这其实就是个离散变量模型,和bzoj3144类似. 先拆点,S向i号点拆出的0号点连容量为inf的边,i号点拆出的n-1号点向T连容量为inf的边. i号点拆出的k号点向k+1号点连容量为(a[i] - k - 1) ^ 2的边.
对于有限制的点对(i,j),i拆出的第k个点向j拆出的第k-1个点连容量为inf的边,j连i也同样如此.
还没完.必须保证d1 = 0.那么1拆出的第k个点向第k+1个点的边就不能被割. 将其容量变成inf就好了. 但是这样会存在一个问题:ST总是连通的. 因为S到T总是可以经过1号点拆出的点,这条路径上的每条边的容量都是inf,割不掉.
怎么解决呢?去掉S与1号点拆出的第一个点的连边就好了.
不断调整,满足最小割的要求,同时使得答案合理,这是最小割模型建图的一般分析方法.
同时这道题融合了最短路问题的一些技巧,例如hdu5385,每个点到源点的最短路都和与它相连的点的最短路有关.
#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ,inf = 0x7fffffff;
int n,a[],id[][],cnt,head[maxn],to[maxn],nextt[maxn],w[maxn],tot = ;
int d[maxn],S,T,ans;
char s[][]; void add(int x,int y,int z)
{
w[tot] = z;
to[tot] = y;
nextt[tot] = head[x];
head[x] = tot++; w[tot] = ;
to[tot] = x;
nextt[tot] = head[y];
head[y] = tot++;
} bool bfs()
{
memset(d,-,sizeof(d));
d[S] = ;
queue <int> q;
q.push(S);
while (!q.empty())
{
int u = q.front();
q.pop();
if (u == T)
return true;
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
if (w[i] && d[v] == -)
{
d[v] = d[u] + ;
q.push(v);
}
}
}
return false;
} int dfs(int u,int f)
{
if (u == T)
return f;
int res = ;
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
if (w[i] && d[v] == d[u] + )
{
int temp = dfs(v,min(f - res,w[i]));
w[i] -= temp;
w[i ^ ] += temp;
res += temp;
if (res == f)
return res;
}
}
if (!res)
d[u] = -;
return res;
} void dinic()
{
while(bfs())
ans += dfs(S,inf);
} int main()
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
scanf("%s",s[i] + );
for (int k = ; k <= n - ; k++)
for (int i = ; i <= n; i++)
id[i][k] = ++cnt;
S = cnt + ;
T = S + ;
add(id[][n - ],T,inf);
for (int i = ; i <= n; i++)
add(S,id[i][],inf),add(id[i][n - ],T,inf);
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
{
if (s[i][j] == 'Y')
{
for (int k = ; k <= n - ; k++)
add(id[i][k],id[j][k - ],inf);
}
}
for (int i = ; i <= n; i++)
{
int x;
scanf("%d",&x);
for (int j = ; j <= n - ; j++)
add(id[i][j],id[i][j + ],(i == ? inf : (x - j - ) * (x - j - )));
}
dinic();
printf("%d\n",ans); return ;
}
Topcoder SRM590 Fox And City的更多相关文章
- Topcoder SRM 590 Fox And City
Link 注意到原图给的是一个无向连通图. 如果在原图中两点之间有一条无向边,那么这两点到\(1\)的距离之差不大于\(1\). 这个命题的正确性是显然的,我们考虑它的逆命题: 给定每个点到\(1\) ...
- HDU.5385.The path(构造)
题目链接 最短路构造题三连:这道题,HDU4903,SRM590 Fox And City. \(Description\) 给定一张\(n\)个点\(m\)条边的有向图,每条边的边权在\([1,n] ...
- 未A,或用水法,或不熟的题
今天是2017.11.25 1. 用栈实现dfs JZOJ_senior 3467 2. 链表加堆或线段树乱搞 JZOJ_senior 3480 3. 求每个边所在的奇环.偶环 JZOJ_senior ...
- TopCoder SRM 590
第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement Fox Ciel is going to play Gomoku with her friend ...
- Topcoder 练习小记,Java 与 Python 分别实现。
Topcoder上的一道题目,题目描述如下: Problem Statement Byteland is a city with many skyscrapers, so it's a pe ...
- [TopCoder] SRM_594_DIV2.250
好长一段时间没写博客了,实在是想不出有什么好写的.近期也有对自己的职业做了一点思考,还是整理不出个所以然来,很是烦躁 ... 研究TopCoder已经有一小段时间了,都是在做之前的题目,还没有实际参加 ...
- TopCoder入门
TopCoder入门 http://acmicpc.info/archives/164?tdsourcetag=s_pctim_aiomsg 本文根据经典的TC教程完善和改编.TopCoder:htt ...
- BZOJ 2001: [Hnoi2010]City 城市建设
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1132 Solved: 555[Submit][ ...
- History lives on in this distinguished Polish city II 2017/1/5
原文 Some fresh air After your time underground,you can return to ground level or maybe even a little ...
随机推荐
- python中的魔法参数:*args和**kwargs
python中的魔法参数:*args和**kwargs def foo(*args, **kwargs):print 'args = ', argsprint 'kwargs = ', kwargsp ...
- Linux相关指令和操作
环境:Ubuntu16.04 1.安装ipython notebook 安装这个软件,必须安装anaconda: 注意几点:1.添加环境变量在安装的时候会自动询问你是否添加: 2.bash命令中应该和 ...
- c# webbrowser控件内核版本强制修改
int BrowserVer, RegVal; // get the installed IE version using (WebBrowser Wb = new WebBrowser()) Bro ...
- weblogic实时监控开发
参考api文档 https://docs.oracle.com/cd/E13222_01/wls/docs90/wlsmbeanref/core/index.html https://docs.ora ...
- MariaDB基于GTID主从复制及多主复制
一.简单主从模式配置步骤(必须要mysql5.6,此处以maridb10.0.10为例) 1.配置主从节点的服务配置文件 # vim /etc/my.cnf 1.1.配置master节点: [mysq ...
- Lodash JavaScript 实用工具库
地址:https://www.lodashjs.com/ Lodash 是一个一致性.模块化.高性能的 JavaScript 实用工具库.
- 2017-2018-2 20155309 南皓芯 Exp5 MSF基础应用
实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 1.1一个主动攻击实践,如ms08_067; 1.2 一个针对浏览器的攻击,如ms11_05 ...
- 设置JAVA环境变量
export JAVA_HOME=/usr/local/jdkexport JRE_HOME=/usr/local/jdk/jreexport CLASSPATH=.:$JAVA_HOME/lib/d ...
- [转] ES6 import/export:模块导入导出方式
export导出语法 // default exports export default 42; export default {}; export default []; export defaul ...
- Delphi数据库数据用文件流方式快速写入Excel文件
在开发数据库应用程序中,经常要将类型相同的数据导出来,放到Excel文件中,利用Excel强大的编辑功能,对数据作进一步的加工处理.这有许多的方法,我们可以使用OLE技术,在Delphi中创建一个自动 ...