Python的X[y==1, 0]

最近研究逻辑回归,Iris花的经典示例,代码就不全粘贴了,具体代码参看“Iris花逻辑回归与实现

 plt.plot(X[y==0, 0], X[y==0,1], "bs")
plt.plot(X[y==1, 0], X[y==1, 1], "g^")

X[y==0, 0]中的y==0是个什么东东,为什么可以占据X的第一个位置?

首先我们看一下X是个什么?

 from sklearn import datasets
iris = datasets.load_iris() X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.int)
print(X)
 

Output:

[[1.4 0.2]
[1.4 0.2]
...
[5.1 1.8]]
  X是一个数组,数组的元素是一个二元组。在解释X[y==0, 0]之前,首先要明白X[:,:]左面:代表的是行范围,右边“:”代表的是列范围,如果是冒号则代表全部,否则就像代码中第四行那样,指定一个范围;那么无论是“:”,还是指定一个范围(类似于(2,3)),其实本质都是会被翻译成一个true/false的一维一元数组,每个元素都是代表数组对应位置的元素是否要出现。
  比如,y==0,print之后其实是[True True False ...],那么X[y==0, 0],就X的前三个元素而言,分别代表返回(包含),返回(包含),不返回(不包含);与之类似对于“iris["data"][:, (2, 3)]”这个写法,左边的那个":"代表的行是[True,True, ... ,True],全是true;
  那么X[y==0, 0]中,第二个0代表什么意思呢?y==1解决了行中那些返回(那些为true的返回),右边的那个数字代表就是返回那一列,0,代表返回的是第一列,就是上面那个1,4,1.4...5.1;与之类似对于“iris["data"][:, (2, 3)]”这个写法,代表列是要返回第三列和第四列。
  这里看到在python里面行列的处理模式是不一样的,行的取舍是通过一个True/ False数组来实现的,列的取舍确实通过指定了那一列;这个其实从矩阵的角度能够更好的理解。
 
concatenate
 
 X_outliers=np.array([[3.4, 1.3], [3.2, 0.8]])
y_outliers=np.array([0, 0]) Xo1=np.concatenate([X, X_outliers[:1]], axis=0)
yo1=np.concatenate([y, y_outliers[:1]], axis=0)
Xo2=np.concatenate([X, X_outliers[1:]], axis=0)
yo2=np.concatenate([y, y_outliers[1:]], axis=0)

numpy里面的concatenate的涵义是合并矩阵;axis=0代表是添加一行,axis=1则代表添加一列。以此为例:

pprint(X)显示为:

u'X:'
array([[1.4, 0.2],
[1.4, 0.2],
...

[5.1, 1.8]])

pprint(Xo1)显示为:

u'Xo1:' 
array([[1.4, 0.2],
[1.4, 0.2],
...

[5.1, 1.8],

[3.4, 1.3]])

这其实就是行添加了一行。

原生数组和reshape之后数组

X_test = np.linspace(1,5,5)
pprint (X_test)
X_tmp = X_test.reshape(-1, 1)
pprint(X_tmp)

输出:

array([1., 2., 3., 4., 5.])
array([[1.], [2.], [3.], [4.], [5.]])

python数组常见操作:

Python原生是没有数组的,[]这种类型在python里面叫List;二维数组可以通过lsti[i][i]来进行索引(array是通过[i, j]来进行索引),支持通过":"来进行范围索引,但是像前面描述的,只是支持一个维度的索引,例如[:5][1:](对于array而言可以通过[:,:]来进行索引)。
如果是数组的话,还是使用numpy里面的array;
numpy里面提供的是array以及可以通过[x1:x2,y1:y2]模式来索引矩阵形式;同时可以通过array.shape方式来获取矩阵的行数/列数;同时可以通过reshape来进行行列重置;可以通过.T来进行“转置”。
matrix是numpy的array的一个子集,同样支持“:”模式的索引,以及shape[i]获取行、列的数量;但是只支持矩阵形式:二维数组形式。
matrix和numpy的乘法(*)模式不同,matrix是乘数的行*被乘数的列这种模式;array则是同位数的相乘。
 
互转:
list转array:np.array(list)
list转matrix:np.mat(list)
array转list:data.toList()
array和matrix互转:np.asmatrix, np.asarray
 
array想要采用matrix的乘法:np.dot(array1, array2)
matrix想要同位数的乘法:np.multiply(mat1, mat2)
 
成员
# 属性
ndarray.shape: 多維陣列的大小(形狀)
ndarray.ndim: 多維陣列的維度
ndarray.itemsize: 陣列當中元素的大小(佔幾個 byte)
ndarray.nbytes: 整個陣列所有元素的大小總計
ndarray.T: 轉置矩陣,只能在維度 <= 2 的時候使用,與 self.transpose() 效果相同
ndarray.flat: 把陣列扁平化輸出
 
# 格式转换
ndarray.item: 類似 List 的 Index,把 Array 扁平化取得某 Index 的 value
ndarray.tolist: 把 NumPy.ndarray 輸出成 Python 原生 List 型態
ndarray.itemset: 把 ndarray 中的某個值(純量)改掉
 
# 维度操作
ndarray.reshape(shape): 把同樣的資料以不同的 shape 輸出(array 的 total size 要相同)
ndarray.resize(shape): 重新定義陣列的大小
ndarray.flatten(): 把多維陣列收合成一維陣列(扁平化&Copy)
ndarray.ravel(): 回傳扁平化的陣列(無 Copy)
 
# 项目选择与操作
ndarray.take(indices): 根據輸入索引值來得到指定陣列
ndarray.put(indices, values): 根據索引值改變陣列 value
ndarray.repeat(times): 重複陣列的值(類似擴張)
ndarray.sort(): 把陣列當中的元素排序
ndarray.sum(): 加總多維陣列(可指定加總的維度根據)
---------------------
参考
 
 
 

Python中的数组和list的更多相关文章

  1. 基于Python中numpy数组的合并实例讲解

    基于Python中numpy数组的合并实例讲解 下面小编就为大家分享一篇基于Python中numpy数组的合并实例讲解,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看吧 Python中n ...

  2. python中的数组和列表

    ####转自:模式识别实验室主任   #环境win64+anaconda+python3.6 list & array (1)list不具有array的全部属性(如维度.转置等) 代码1: # ...

  3. python中合并数组的方法

    一.数组纵向合并 1.使用np.vstack()函数 [code] #数组 a = [[1,2,3],[4,5,6]] b = [[1,1,1],[2,2,2]] #纵向合并 c = np.vstac ...

  4. Python中ndarray数组切片问题a[-n -x:-y]

    先看看如下代码: >>a=np.arange(10)>>a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>a[-7:] array( ...

  5. python中使用数组作为索引

    链接:https://blog.csdn.net/yzlh2009/article/details/114118470 情况一,索引数组为整数值 情况二,索引数组为bool值

  6. 一文搞懂Python中的所有数组数据类型

    关于我 一个有思想的程序猿,终身学习实践者,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. Github:https:/ ...

  7. python中的归并排序

    本来在博客上看到用python写的归并排序的程序,然后自己跟着他写了一下,结果发现是错的,不得不自己操作.而自己对python不是非常了解所以就变百度边写,最终在花了半个小时之后就写好了. def m ...

  8. Python中Numpy ndarray的使用

    本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数 ...

  9. python中输入某年某月某日,判断这一天是这一年的第几天?

    输入某年某月某日,判断这一天是这一年的第几天?程序分析 特殊情况,闰年时需考虑二月多加一天: 直接上代码 #定义一个函数,判断是否为闰年 def leapyear(y): return (y % 40 ...

随机推荐

  1. debian镜像下载地址

     http://cdimage.debian.org/debian-cd/9.8.0-live/amd64/iso-hybrid/ 

  2. python 元组攻略

    1.元组中只包含一个元素时,需要在元素后面添加逗号来消除歧义 tup1=(50,) 2.元组中的元素值使不允许修改的,但可以对元组进行连接组合复制代码 1 tup1=(12,34.56)2 tup2= ...

  3. SpringMvc使用FastJson做为json的转换器(注解方式)

    在使用XML方式配置项目,使用fastjson做为Json转换器时通常的在XML内添加如下的配置: <mvc:message-converters register-defaults=" ...

  4. linux command1

    #列出指定用户(当前用户)的组信息 groups #将指定的用户添加(-a)到指定的组内(改组必须已经存在)或指定用户从指定的组中删除(-d) gpasswd –a/-d  username grou ...

  5. LINUX7安装Oracle11g单实例小结

    LINUX7安装Oracle11g遇到问题如下,记录 添加组: groupadd -g 1000 oinstall #报错:提示组被占用 #useradd: group 'oinstall' does ...

  6. Django之模板层-语法:{{ }}

    模版语法的深度查询(.) views.py def index(request): name = 'name' lis = [1,2,3,4,5,6] dic = {"name": ...

  7. Thread sleep() wait()

    学艺不精,先总结一下两者的区别: 对比项 wait sleep 类所属 Object Thread,static方法 使用 在synchronised block中(包括notify,notifyAl ...

  8. 第一天 hello world

    二进制编译工具生成img软盘执行文件 二进制编译工具https://pan.baidu.com/s/1j3wAsFxTLWv17V55iNKJJw 利用Bz.exe工具写操作系统自启程序: 前0000 ...

  9. 【HDOJ1217】【Floyd求最长路】

    http://acm.hdu.edu.cn/showproblem.php?pid=1217 Arbitrage Time Limit: 2000/1000 MS (Java/Others)    M ...

  10. 20165313 《Java程序设计》第四周学习总结

    教材学习总结 public:1.用在类前.2.用在方法前 .3. 用在成员变量前 private:用在成员变量前 final1.用在类前2.用在方法前3.用在成员变量前 static:1.所有对象公有 ...