奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
      这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。

原图及数学公式取自:

http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。

脚本代码:

[ScriptLines]
u=a*(j - i)
v=i*(b - k)
w=i*j - c*k
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=10.000000
b=28.000000
c=2.666667
i=0.100000
j=0.100000
k=0.200000
t=0.001000

混沌图像:

奇怪吸引子---Lorenz的更多相关文章

  1. 奇怪吸引子---YuWang

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  2. 奇怪吸引子---WimolBanlue

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  3. 奇怪吸引子---WangSun

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  4. 奇怪吸引子---TreeScrollUnifiedChaoticSystem

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  5. 奇怪吸引子---Thomas

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  6. 奇怪吸引子---ShimizuMorioka

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  7. 奇怪吸引子---Sakarya

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  8. 奇怪吸引子---Russler

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  9. 奇怪吸引子---Rucklidge

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

随机推荐

  1. visual studio 2017 installer 安装包的安装必备组件设置

    visual studio installer 2017  安装包的安装必备组件设置,默认设置只有net frmwork 4.6.1,如下图 这个时候如果打包安装,那么打出来的包一定需要先安装4.6. ...

  2. 【mysql】表备份

    几个讲得比较好的资料: http://www.cnblogs.com/liangshaoye/p/5464794.html:讲解了热备,温备,冷备,增量备份,差异备份等多种概念. http://www ...

  3. django----数据库表设计

    设计表时注意的几点: 1. nid = models.AutoField(primary_key=True)        #如果不指定django会默认加上id的 nid = models.BigA ...

  4. python+selenium八:Alert弹窗

    此弹窗是浏览器自带的弹窗,不是html中的元素 from selenium import webdriverfrom selenium.webdriver.common.action_chains i ...

  5. 获取更新元素文本text()

    text() 方法,获取元素文本,也可以设置元素的文本值.相 <!DOCTYPE html> <html lang="en"> <head> & ...

  6. pika的阻塞式使用

    [root@cloudplatform ELK]# cat startIncHouTai.py import os # 杀掉内存中的进程 cmd='pgrep -f PutDataToKafkaInc ...

  7. Android 倒计时按钮,倒计时发送短信验证码…

    Android基础之——CountDownTimer类,轻松实现倒计时功能https://www.cnblogs.com/yfceshi/p/6853746.html android中获取验证码后出现 ...

  8. 《Gradle权威指南》--Gradle构建脚本基础

    No1: 设置文件默认名是setting.gradle,放在根目录下,大多数作用都是为了配置子工程 No2: 一个Project包含很多个Task.Task就是一个操作,一个原子性的操作.其实它是Pr ...

  9. 附002.Docker常见命令

    # docker --help Usage: docker [OPTIONS] COMMAND [arg...] docker daemon [ --help | ... ] docker [ -h ...

  10. spring AbstractBeanDefinition创建bean类型是动态代理类的方式

    1.接口 Class<?> resourceClass 2.获取builder BeanDefinitionBuilder builder = BeanDefinitionBuilder. ...