奇怪吸引子---Lorenz
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors
这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
u=a*(j - i)
v=i*(b - k)
w=i*j - c*k
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=10.000000
b=28.000000
c=2.666667
i=0.100000
j=0.100000
k=0.200000
t=0.001000
混沌图像:
奇怪吸引子---Lorenz的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- Java基础95 过滤器 Filter
1.filter 过滤器的概述 filter过滤器:是面向切面编程的一种实现策略,在不影响原来的程序流程的前提下,将一些业务逻辑切入流程中,在请求达到目标之前进行处理,一般用于编码过滤.权限过滤... ...
- [PHP] 链表数据结构(单链表)
链表:是一个有序的列表,但是它在内存中是分散存储的,使用链表可以解决类似约瑟夫问题,排序问题,搜索问题,广义表 单向链表,双向链表,环形链表 PHP的底层是C,当一个程序运行时,内存分成五个区(堆区, ...
- python----多继承C3算法
https://blog.csdn.net/fmblzf/article/details/52512145
- git填坑笔记
Counting objects: 3, done.Writing objects: 100% (3/3), 203 bytes | 0 bytes/s, done.Total 3 (delta 0) ...
- python 全栈开发,Day124(MongoDB初识,增删改查操作,数据类型,$关键字以及$修改器,"$"的奇妙用法,Array Object 的特殊操作,选取跳过排序,客户端操作)
一.MongoDB初识 什么是MongoDB MongoDB 是一个基于分布式文件存储的数据库.由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介 ...
- android app 流量统计
https://blog.csdn.net/yzy9508/article/details/48300265 | android 数据流量统计 - CSDN博客https://blog.csdn.ne ...
- PostgreSQL的SQL语句中的双引号引发的问题
最近开发一个WEB的ETL工具需要用到不同的数据源.第一次用POSTGRESQL发现一个双引号引发的问题: 标准的SQL是不区分大小写的.但是PostgreSQL对于数据库中对象的名字允许使用支持大小 ...
- 大数据在教育中的应用 part2笔记
什么是交叉检验(K-fold cross-validation) K层交叉检验就是把原始的数据随机分成K个部分.在这K个部分中,选择一个作为测试数据,剩下的K-1个作为训练数据. 交叉检验的过程实 ...
- python全栈开发day40-浮动的四大特性,浮动带来的问题和解决问题,文本属性、字体属性和颜色介绍
一.昨日内容总结 1.盒模型及其属性 2.文本级标签.行内块.块级标签 3.继承性.层叠性.权重 4.浮动四大特性 # 浮动元素脱离标准文档流 # 贴靠 # 字围效果 # 自动收缩或紧缩 二.今日内容 ...
- BZOJ5074 小B的数字 BZOJ2017年10月月赛 其他
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5074 题意概括 题解 作为蒟蒻的我第一个就选择了过的人最多的D题. 不仔细看好吓人. 然而并不难. ...