【HAOI2016】放旗子
终于自己推出来一道题了quq然而时间有点久,考场上并不大丈夫……
原题:
给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行只有一枚棋子,每列只有一枚棋子的限制,求有多少种方案。
N<=200
棋盘放置,这个跟组合数学有点关系(应该没有),N<=200,看上去可以DP(应该不能)
然后我在想组合数学和DP的时候首先发现了两点特殊性:
棋盘的每一行是可以随便换的,因为每行每列互不干扰(产生限制的是棋子),所以可以把所有n相等的情况都看做一种,也就是说题目中给出的棋盘并没有什么卵用(其实如果写20的dfs或60的壮鸭还是要用的
为了方便研究,现在约定每个棋盘上被限制的位置都是从坐上到右下,比如n==4的时候就是酱紫:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
然后如果安行选的话,第i行第j列选完之后,就可以看做把第i行和第j列删掉了
比如上面的n==4的情况,如果删掉第1行第2列,这个方阵就会变成下面酱紫:
0 0 0
0 1 0
0 0 1
多手玩几组数据后容易发现,上面删除后的矩阵有非常亦可赛艇的特点
这是一个3*3的棋盘,并且从(2,2)到(3,3)和2*2的棋盘是一样的(在开始的时候就约定了把所有n相等的情况都看做一种
所以这也可以看成3*3的左上角变成0
接下来在第一行放棋子有两种选择,要么不在(1,1)放,方案数等于3*3的,在(1,1)放,就可以把第一行和第一列删掉,剩下的棋盘就是个2*2的,也就是说在(1,1)放的方案数等于2*2的
所以上面这个被删过的矩阵的方案数就是2*2的方案数+3*3的方案数
因为这个被拿来举例的矩阵是删掉(1,2)的结果,同样也可以删掉(1,2~n),共有n-1种删法,易证每种删法都符合上面的性质
这样就得到了一个关于n*n棋盘方案数的正确表示,可以发现n*n棋盘的方案数只与(n-1)*(n-1)的方案数和(n-2)*(n-2)的方案数有关,这些都是在n之前的量(这话有点奇怪,可以忽略
所以就可以列出递推式,用f[i]表示i*i棋盘的方案数,f[i]=(f[i-1]+f[i-2])*(i-1),初始状态为f[1]=0,f[2]=1
然后这道题就完结了,出题人为了不让推出递推式的同学瞬间秒掉这道题,增加代码复杂度,答案没有膜数,需要高精度
然而可以发现递推式中只有高精加高精和高精乘单精,也不怎么难写(就算是这样,高精度还是有不少细节需要注意
我是偶然发现了两个特殊性才想出这道题,虽然这次依旧没有想起来去往题目特殊性的方面去思考,但是再次证明了想题主要思考特殊性而不是一般性
总之这道题就是发现特殊性(不是太难看出来),往递推的方面思考(思路不要歪到组合数上去),高精度别写挂(注意对拍)就可以拿到满分辣
(然而在考场上我还是想不出来quq
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int dalao=;
void splay(int &x){int mk=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')mk=-; ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-''; ch=getchar();}
x=;
}
int n;
int f[][],l[];
int a[];
int main(){//freopen("ddd.in","r",stdin);
cin>>n;
int root;
//for(int i=1;i<=n;++i)for(int j=1;j<=n;++j) splay(root);
f[][]=,l[]=l[]=;
for(int i=;i<=n;++i){
/*l[i]=l[i-1]+l[i-2]-1;
for(int j=1;j<=l[i-1];++j)
for(int k=1;k<=l[i-2];++k){
f[i][j+k-1]+=f[i-1][j]*f[i-2][k];
f[i][j+k]+=f[i][j+k-1]/dalao,f[i][j+k-1]%=dalao;
}*/
l[i]=max(l[i-],l[i-]);
for(int j=;j<=l[i];++j){
f[i][j]+=f[i-][j]+f[i-][j];
f[i][j+]+=f[i][j]/dalao,f[i][j]%=dalao;
}
while(f[i][l[i]+]) ++l[i],f[i][l[i]+]+=f[i][l[i]]/dalao,f[i][l[i]]%=dalao;
for(int j=;j<=l[i];++j) a[j]=f[i][j],f[i][j]=;
for(int j=;j<=l[i];++j){
f[i][j]+=a[j]*(i-);
f[i][j+]+=f[i][j]/dalao,f[i][j]%=dalao;
}
while(f[i][l[i]+]) ++l[i],f[i][l[i]+]+=f[i][l[i]]/dalao,f[i][l[i]]%=dalao;
}
cout<<f[n][l[n]];
for(int i=l[n]-;i>=;--i) printf("%04d",f[n][i]);
cout<<endl;
return ;
}
【HAOI2016】放旗子的更多相关文章
- bzoj4563 HAOI2016放旗子
bzoj传送门 已知了"任意两个障碍不在同一行,任意两个障碍不在同一列",如果我们按每列只能放一个来考虑,那么这\(n\)个障碍一定是一个排列,那么也就是"每一列只能放一 ...
- 【BZOJ4563】[Haoi2016]放棋子 错排+高精度
[BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...
- 洛谷P3182 [HAOI2016]放棋子
P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...
- bzoj4563: [Haoi2016]放棋子(错排+高精)
4563: [Haoi2016]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 387 Solved: 247[Submit][Status] ...
- [Haoi2016]放棋子 题解
4563: [Haoi2016]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 440 Solved: 285[Submit][Status] ...
- BZOJ4563: [Haoi2016]放棋子
Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在 这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行 ...
- [HAOI2016] 放棋子及错排问题
题目 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足 ...
- BZOJ4563:[HAOI2016]放棋子——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4563 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列 ...
- BZOJ 4563: [Haoi2016]放棋子
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 389 Solved: 248[Submit][Status][Discuss] Descriptio ...
随机推荐
- POJ 1837 Balance 水题, DP 难度:0
题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...
- 为什么IT运维工程师要学习Linux系统
不论你是否知道,其实你每天都在使用Linux.每次你访问微博.百度甚至是一些小电影网站,你的客户端(浏览器)都在与运行在Linux系统上的服务端程序进行通讯,大多数的电子设备,例如数位录像机.飞机.自 ...
- Resharper插件如何启用原VS的智能提示
第一步:vs2015选择工具—>选项—>文本编辑器—>C#—>常规—>语句结束,勾选自动列出成员,如下图: 第二步: 关闭Resharper智能提示,并设置为Visual ...
- linux:ssh远程调用tomcat脚本时候出错
我们都知道,使用ssh在另一台机子执行一个ssh文件的语句是酱紫的 ssh root@1.9.7.56 "chmod 777 /opt/script/tomcatStop.sh ; sh / ...
- Android : android 8.0 audio 接口分析
1.HIDL 的概念 HIDL 读作 hide-l,全称是 Hardware Interface Definition Language.它在 Android Project Treble 中被起草, ...
- SWAP 简介
swap 交换分区,是存放在内存当中的临时数据(断电数据丢失) SWAP作用:当内存不足时会导致系统挂了,SWAP就是起到一个临时内存的作用,当内存不足时SWAP充当临时内存,防止系统挂掉
- centos7中docker操作
docker部署nginx 1. 下载nginx [root@localhost my.Shells]# docker images REPOSITORY TAG IMAGE ID CREATED S ...
- 手打struts知识点
Struts2概论 1.MVC原理 MVC(Model-View-Controller),程序设计理念 视图不用多说,html.jsp等 控制器,中转站,分配各个组件应当做什么,接受参数并跳转其他处理 ...
- 强化学习3-蒙特卡罗MC
之前讲到强化学习可以用马尔科夫决策过程来描述,通常情况下,马尔科夫需要知道 {S A P R γ},γ是衰减因子,那为什么还需要蒙特卡罗呢? 首先什么是蒙特卡罗? 蒙特卡罗实际上是一座赌城的名字,蒙 ...
- aapt获取包名和activity,启动app
1.android sdk的环境安装好了之后,在build-tools\** 的目录下找到aapt.exe,将这个路径设置环境变量,添加到path下 2.在cmdl里面输入:aapt,出现以下内容就是 ...