CF643D Bearish Fanpages
题意
英文版题面
.input-output-copier {
font-size: 1.2rem;
float: right;
color: #888 !important;
cursor: pointer;
border: 1px solid rgb(185, 185, 185);
padding: 3px;
margin: 1px;
line-height: 1.1rem;
text-transform: none;
}
.input-output-copier:hover {
background-color: #def;
}
.test-explanation textarea {
width: 100%;
height: 1.5em;
}
5 seconds
256 megabytes
standard input
standard output
There is a social website with n fanpages, numbered 1 through n. There are also n companies, and the i-th company owns the i-th fanpage.
Recently, the website created a feature called following. Each fanpage must choose exactly one other fanpage to follow.
The website doesn’t allow a situation where i follows j and at the same time j follows i. Also, a fanpage can't follow itself.
Let’s say that fanpage i follows some other fanpage j0. Also, let’s say that i is followed by k other fanpages j1, j2, ..., jk. Then, when people visit fanpage i they see ads from k + 2 distinct companies: i, j0, j1, ..., jk. Exactly ti people subscribe (like) the i-th fanpage, and each of them will click exactly one add. For each of k + 1 companies j0, j1, ..., jk, exactly people will click their ad. Remaining
people will click an ad from company i (the owner of the fanpage).
The total income of the company is equal to the number of people who click ads from this copmany.
Limak and Radewoosh ask you for help. Initially, fanpage i follows fanpage fi. Your task is to handle q queries of three types:
- 1 i j — fanpage i follows fanpage j from now. It's guaranteed that i didn't follow j just before the query. Note an extra constraint for the number of queries of this type (below, in the Input section).
- 2 i — print the total income of the i-th company.
- 3 — print two integers: the smallest income of one company and the biggest income of one company.
The first line of the input contains two integers n and q (3 ≤ n ≤ 100 000, 1 ≤ q ≤ 100 000) — the number of fanpages and the number of queries, respectively.
The second line contains n integers t1, t2, ..., tn (1 ≤ ti ≤ 1012) where ti denotes the number of people subscribing the i-th fanpage.
The third line contains n integers f1, f2, ..., fn (1 ≤ fi ≤ n). Initially, fanpage i follows fanpage fi.
Then, q lines follow. The i-th of them describes the i-th query. The first number in the line is an integer typei (1 ≤ typei ≤ 3) — the type of the query.
There will be at most 50 000 queries of the first type. There will be at least one query of the second or the third type (so, the output won't be empty).
It's guaranteed that at each moment a fanpage doesn't follow itself, and that no two fanpages follow each other.
For each query of the second type print one integer in a separate line - the total income of the given company. For each query of the third type print two integers in a separate line - the minimum and the maximum total income, respectively.
5 12
10 20 30 40 50
2 3 4 5 2
2 1
2 2
2 3
2 4
2 5
1 4 2
2 1
2 2
2 3
2 4
2 5
3
10
36
28
40
36
9
57
27
28
29
9 57
In the sample test, there are 5 fanpages. The i-th of them has i·10 subscribers.
On drawings, numbers of subscribers are written in circles. An arrow from A to B means that A follows B.
The left drawing shows the initial situation. The first company gets income from its own fanpage, and gets income
from the 2-nd fanpage. So, the total income is 5 + 5 = 10. After the first query ("2 1") you should print 10.
The right drawing shows the situation after a query "1 4 2" (after which fanpage 4 follows fanpage 2). Then, the first company still gets income 5 from its own fanpage, but now it gets only from the 2-nd fanpage. So, the total income is 5 + 4 = 9 now.
阿狸的基环内向树森林
Background
当阿狸醒来的时候,发现自己处在基环内向森林的深处,阿狸渴望离开这个乌烟瘴气的地方。“明天还有与桃子的约会呢”,阿狸一边走一边说,“可是,这个森林的出口在哪儿呢?”
阿狸走啊走,走啊走,就是找不到出口。不知所措的他,突然听到了一个苍老的声音:“这是一片有魔法的密林,这里的树的形态也会时不时的变化,晃晃你的小脑瓜,是不是感觉有水在流动呢?”
Description
阿狸所在的森林有 N 个节点,编号从 1 到 N。每个节点都连出去恰好一条有向边,设 i 号点连出去的点为 A[i]。同时,阿狸发现,A[i]≠i,而且 A[A[i]]≠i。
每个节点上都有一些糖果,第 i 个节点上的糖果数为 B[i]。阿狸定义一个节点的糖果稠密度为 C[i],C[i]求法如下:
假设与 i 距离不超过 1 的点有 D[i]个(包括 i 连出去的点、连向 i 的点以及 i 自己),分别是 P[1]、P[2]…P[D[i]]。
设\(E[i]=\left\lfloor\frac{B[i]}{D[i]}\right\rfloor\),那么\(C[i]=B[i]-D[i]\times E[i]+\sum_{j=1}^{D[i]}E[P[j]]\)
现在阿狸想让你实现一个糖果稠密度分析仪,这个分析仪要支持三种操作:
➢ 1 i j 表示把 A[i]改为 j,保证 j≠i 且 A[j]≠i。
➢ 2 i 表示询问 C[i]的值,即点 i 的糖果稠密度。
➢ 3 表示询问所有节点中最小的 C[i]的值和最大的 C[i]的值。
Input
第一行两个正整数 N 和 Q,表示节点个数和操作个数。
第二行 N 个正整数,第 i 个数表示 B[i]。
第三行 N 个正整数,第 i 个数表示 A[i]。
接下来 Q 行,每行形如 1 i j 或 2 i 或 3 ,表示操作。
Output
有若干行,表示操作 2 和操作 3 的答案。
Sample Input
5 12
10 20 30 40 50
2 3 4 5 2
2 1
2 2
2 3
2 4
2 5
1 4 2
2 1
2 2
2 3
2 4
2 5
3
Sample Output
10
36
28
40
36
9
57
27
28
29
9 57
Data Limitation
对于测试点 1~2,保证 \(N,Q≤5×10^3\),1、2、3 操作出现次数均在 Q/3 左右。
对于测试点 3~6,保证 \(N,Q≤3×10^4\),1、2、3 操作出现次数均在 Q/3 左右。
对于测试点 7~8,保证没有 2 操作,1、3 操作出现次数均在 Q/2 左右。
对于测试点 9~10,保证没有 3 操作,1、2 操作出现次数均在 Q/2 左右。
对于测试点 11~12,保证任何时候 A[i]≤5,1、2、3 操作出现次数均在 Q/3 左右。
对于测试点 13~14,保证任何时候 A[i]≤100,1、2、3 操作出现次数均在 Q/3 左右。
对于测试点 15~16,保证 B[i]≤100,1、2、3 操作出现次数均在 Q/3 左右。
对于 100%的数据,保证 \(3≤N≤10^5,1≤Q≤10^5,1≤B[i]≤10^{12},1≤A[i]≤N\)。
分析
分析那个糖果稠密度,发现可以拆分成“只与i及其周围点数量有关的式子”+“周围一圈的E”。直觉那个修改操作的变动量很少。
由于要修改A,所以想到把“周围一圈的E”拆分成“连向i的点的E”+“i连到的点的E”,然后大力维护即可。
我们可以把一个节点 i 的糖果稠密度 C[i]分成两部分,第一部分是 A[i]对 C[i]的贡献E[A[i]],第二部分是剩下的点对 i 的贡献 C[i]-E[A[i]],设 F[i]=C[i]-E[A[i]]。
对于一个节点 i,我们维护两个信息,一个是 E[i],另一个是所有连向 i 的点的 F 值所构成的集合(也可以用两个堆来维护),设这个集合为 Son[i]。
对于全局我们维护一个集合 S,S 的构成如下:我们把每个节点 i 的 min(Son[i])+E[i]和 max(Son[i])+E[i]两个值加到集合 S 中。
显然,操作 2 的答案就是 E[A[i]]+F[i],而操作 3 的答案就是 min(S)和 max(S)。
考虑操作 1 怎么维护,把 A[i]的值改成了 j,这个操作会影响的节点是 i、j、A[i]、A[j]、A[A[i]]、A[A[j]]、A[A[A[i]]],其中 i 的 A 发生了改变, A[i]和 j 的 D、E、F 和 Son 发生了改变,于是 A[A[i]]和 A[j]的 F 和 Son 也随之改变,于是 A[A[A[i]]]和 A[A[j]]的 Son 也改变了。所以分别对这七个节点维护即可,顺便再维护一下 S,常数超级大。
总复杂度是 O(NlogN)
代码
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std;
co int N=1e5+1;
int n,q,num[N],f[N];
ll t[N],val[N],dev[N],add[N];
multiset<ll> Ans,Son[N];
multiset<ll>::iterator it;
void rev(int x){
if(Son[x].empty()) return;
it=Son[x].begin(),Ans.insert(*it+add[x]);
it=Son[x].end(),--it,Ans.insert(*it+add[x]);
}
void del(int x){
if(Son[x].empty()) return;
it=Son[x].begin(),Ans.erase(Ans.find(*it+add[x]));
it=Son[x].end(),--it,Ans.erase(Ans.find(*it+add[x]));
}
void Rev(int x){
Son[f[x]].insert(val[x]+dev[x]); // F
}
void Del(int x){
Son[f[x]].erase(Son[f[x]].find(val[x]+dev[x]));
}
void calc(int x){
add[x]=t[x]/(num[x]+2); // E
val[x]=t[x]-(num[x]+1)*add[x]; // left
}
int main(){
// freopen("forest.in","r",stdin),freopen("forest.out","w",stdout);
read(n),read(q);
for(int i=1;i<=n;++i) read(t[i]); // B
for(int i=1;i<=n;++i) ++num[read(f[i])]; // A,D-2
for(int i=1;i<=n;++i){
calc(i);
dev[f[i]]+=add[i]; // right-E[A]
}
for(int i=1;i<=n;++i) Rev(i);
for(int i=1;i<=n;++i) rev(i);
for(int i=1,o,x,y;i<=q;++i){
if(read(o)==1){
read(x),read(y);
if(f[x]==y) continue;
// cut
del(f[x]),del(f[f[x]]),del(f[f[f[x]]]);
Del(x),Del(f[x]),Del(f[f[x]]);
dev[f[x]]-=add[x],--num[f[x]];
dev[f[f[x]]]-=add[f[x]];
calc(f[x]);
dev[f[f[x]]]+=add[f[x]];
Rev(f[x]),Rev(f[f[x]]);
rev(f[x]),rev(f[f[x]]),rev(f[f[f[x]]]);
// link
f[x]=y;
del(f[x]),del(f[f[x]]),del(f[f[f[x]]]);
Del(f[x]),Del(f[f[x]]);
dev[f[x]]+=add[x],++num[f[x]];
dev[f[f[x]]]-=add[f[x]];
calc(f[x]);
dev[f[f[x]]]+=add[f[x]];
Rev(x),Rev(f[x]),Rev(f[f[x]]);
rev(f[x]),rev(f[f[x]]),rev(f[f[f[x]]]);
}
else if(o==2){
read(x);
printf("%lld\n",dev[x]+val[x]+add[f[x]]);
}
else{
it=Ans.begin(),printf("%lld ",*it);
it=Ans.end(),--it,printf("%lld\n",*it);
}
}
return 0;
}
CF643D Bearish Fanpages的更多相关文章
- An Introduction to Stock Market Data Analysis with R (Part 1)
Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evalua ...
- B
baababblebabblerbabebabelbaboonbabybabyhoodBabylonBabylonianbacchanalbacchanalianbachelorbacillusbac ...
- 用Python做股市数据分析(二)
本文由 伯乐在线 - 小米云豆粥 翻译.未经许可,禁止转载!英文出处:Curtis Miller.欢迎加入翻译组. 这篇博文是用Python分析股市数据系列两部中的第二部,内容基于我在犹他大学 数学3 ...
- [转]Introduction to Learning to Trade with Reinforcement Learning
Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...
- IOTA price analysis
Iota coinchart Look at the trendline drawn in red color, at the very first beginning of this month, ...
- Introduction to Learning to Trade with Reinforcement Learning
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic ...
- 【转】用Python做股市量化策略投资数据分析
金融量化分析介绍 本文摘要; 金融量化分析介绍 1.什么是金融量化分析 2.金融量化分析可以干什么 3.为什么将python运用于金融 4.常用库简介 1.什么是金融量化分析 从标题中我们可以 ...
- 退役III次后做题记录(扯淡)
退役III次后做题记录(扯淡) CF607E Cross Sum 计算几何屎题 直接二分一下,算出每条线的位置然后算 注意相对位置这个不能先搞出坐标,直接算角度就行了,不然会卡精度/px flag:计 ...
- ta-lib 里的蜡烛图形态函数源码
ta-lib 里的蜡烛图形态函数源码 以CDL2CROWS为例, 看一看c语言的源码: 有关的源码文件包括 d:\Documents\Pictures\ta-lib\c\src\ta_func\ta_ ...
随机推荐
- 解决了好几个软件的构建问题,在解决部署问题,bluemix部署
https://www.puteulanus.com/archives/838#comment-961新版 Bluemix 一键搭建 SS 脚本 https://blog.feixueacg.com/ ...
- js正则学习
一直对正则很纠结也很畏惧,以前感觉花时间理解一个个奇奇怪怪的符号,还不如直接百度谷歌之. 但知其然不知其所以然也是种痛苦,所以花了两天稍微学了一下,虽然没学很深入彻底,但也比之前进步不少,特此笔记. ...
- ArrayList和LinkedList有什么区别?
---恢复内容开始--- ArrayList和LinkedList都实现了List接口,但是: ArrayList是基于索引的数据接口,底层是数组,能够以O(1)时间复杂度随机访问元素.而Linked ...
- redis 五大数据类型之set篇
1.sadd/smembers/sismember --set集合赋值 查看值, --sismember 是查看set集合是否有指定的值,有返回1 没有返回0 2.scard,获取集合里面的元素个数 ...
- 18-10-18 Python 思维导图 很棒的
赠送 14 张 Python 知识点思维导图 来源 | Python学习联盟 本文主要涵盖了 Python 编程的核心知识(暂不包括标准库及第三方库). 按顺序依次展示了以下内容的一系列思维导图: ...
- 重启uwsgi脚本备份
NAME="identifyImg_uwsgi.init" if [ ! -n "$NAME" ];then echo "no arguments&q ...
- [工作日志] 2018-12-06 重点: 解决安全测试bug
安全测试bug 业务端提出, 在修改是否给联系人发送短信接口,如果操作人和被操作的联系人不在同一个企业的情况下, 也是可以修改的. 解决办法: 加校验.
- 机器学习: 共轭梯度算法(PCG)
今天介绍数值计算和优化方法中非常有效的一种数值解法,共轭梯度法.我们知道,在解大型线性方程组的时候,很少会有一步到位的精确解析解,一般都需要通过迭代来进行逼近,而 PCG 就是这样一种迭代逼近算法. ...
- Python 笔试 —— 效率与优雅
1. 效率 字符串拼接: 加号拼接字符串将造成对象的创建和垃圾的回收: 使用字符串的 join 方法对尤其是循环中的字符串进行拼接(先将不断出现的字符串 append 到 一个 list 中,再进行 ...
- 2017-2018-2 20165228 实验四《Android程序设计》实验报告
一.实验报告封面 课程:Java程序设计 班级:1652班 姓名:苏祚堃 学号:20165228 指导教师:娄嘉鹏 实验日期:2018年5月14日 实验时间:13:45 - 3:25 实验序号:实验四 ...