题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1150

Time Limit: 10 Sec  Memory Limit: 162 M

Description

  你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。已知办公楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份。然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K 个办公楼一定是相异的)。此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K 对办公楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距离)尽可能小。下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。

  上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用K=2 条电缆。第 1 条电缆的长度是 3km-1km=2km ,第 2 条电缆的长度是 6km-4km=2km。这种配对方案需要总长4km 的网络电缆,满足距离之和最小的要求。

Input

第一行包含整数n和k
其中n(2≤n≤100000)表示办公楼的数目,k(1≤k≤n/2)表示可利用的网络电缆的数目。
接下来的n行每行仅包含一个整数(0≤s≤1000000000),表示每个办公楼到大街起点处的距离。
这些整数将按照从小到大的顺序依次出现。

Output

输出应由一个正整数组成,给出将2K个相异的办公楼连成k对所需的网络电缆的最小总长度。

Sample Input
5 2

1

3

4

6

12

Sample Output
4

题解:

显然肯定是选择相邻的两栋楼架设电缆,那么可以将 $1 \sim n$ 个办公楼变成 $1 \sim n-1$ 个间距,并将其存储在一个数组 $d$ 中。

问题转化为,在 $n-1$ 个 $d_i$ 中,选择 $k$ 个任意两两间均不相邻的数字,使它们的和最小。

假设 $d[1:n-1]$ 中最小的数为 $d_k$,我们可以证明对于 $d_{k-1}$ 和 $d_{k+1}$ 这两个数,要么同时选,要么都不选,

证明不存在只选 $d_{k-1}$ 和 $d_{k+1}$ 中某一个这种情况:若我只选择了 $d_{k-1}$ 而没有选择 $d_{k+1}$,那么我必然可以将 $d_{k-1}$ 改选为 $d_k$,既不会违反两两不相邻的条件,同时又获得了一个更优解,因此不可能存在只选 $d_{k-1}$ 和 $d_{k+1}$ 中某一个这种情况。

同时我们还可以知道,如果不选 $d_{k-1}$ 和 $d_{k+1}$,那么必然会选择 $d_k$,这是显然的。

换句话说,现在就变成了一道二选一:1、选 $d_k$;2、选 $d_{k-1}$ 和 $d_{k+1}$。

因此,可以先选择 $d_k$,然后将 $d_{k-1},d_k,d_{k+1}$ 从数组 $d$ 中删去,添加一个新元素 $d_{k-1} + d_{k+1} - d_k$,然后即变成从新的数组 $d$ 中选择 $k-1$ 个任意两两间均不相邻的数字,使它们的和最小。这样一来,一旦选到 $d_{k-1} + d_{k+1} - d_k$,就相当于抛弃原来的 $d_k$ 转而选择 $d_{k-1}$ 和 $d_{k+1}$。

至于具体实现,对于数组 $d$ 可以构建一个链表结构,用 $pre$ 和 $nxt$ 记录前后相邻的元素。同时,建立一个小顶堆,堆内存储的是指向链表某个位置的指针(记为“节点值”),堆内元素比较大小可以直接由指针 $O(1)$ 得到链表中实际存储的值,即看做节点的键值(节点的键值不同于节点值),用该键值进行节点间的两两比较。

这样一来,每次删除链表内的某一节点可以 $O(1)$ 完成。而要删除堆中对应的指向该节点的指针,由于我们手写二叉堆只能完成删除 $heap$ 数组中指定位置的元素,也就是说,我们需要另开一个数组,用来存储“节点值”到“节点位置”的映射关系,这也正是我们为什么要在堆内存储指针的原因,因为指向链表指定位置的指针是唯一的,方便构建映射关系。

AC代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=+; int n,k;
int d[maxn],pre[maxn],nxt[maxn]; struct Heap
{
int sz;
int heap[maxn],pos[maxn];
void up(int now)
{
while(now>)
{
int par=now>>;
if(d[heap[now]]<d[heap[par]])
{
swap(heap[par],heap[now]);
swap(pos[heap[par]],pos[heap[now]]);
now=par;
}
else break;
}
}
void push(int x)
{
heap[++sz]=x;
pos[x]=sz;
up(sz);
}
inline int top(){return heap[];}
void down(int now)
{
while((now<<)<=sz)
{
int nxt=now<<;
if(nxt+<=sz && d[heap[nxt+]]<d[heap[nxt]]) nxt++;
if(d[heap[now]]>d[heap[nxt]])
{
swap(heap[now],heap[nxt]);
swap(pos[heap[now]],pos[heap[nxt]]);
now=nxt;
}
else break;
}
}
void pop()
{
heap[]=heap[sz--];
pos[heap[]]=;
down();
}
void del(int p) //删除存储在数组下标为p位置的节点
{
heap[p]=heap[sz--];
pos[heap[p]]=p;
up(p), down(p);
}
void delx(int x){del(pos[x]);} //删除堆中值为x的节点
inline void clr(){sz=;}
}h; int main()
{
cin>>n>>k;
for(int i=;i<=n;i++) scanf("%d",&d[i]);
h.clr();
for(int i=;i<n;i++)
{
d[i]=d[i+]-d[i];
pre[i]=i-;
nxt[i]=(i+)%n;
h.push(i);
} int ans=;
while(k--)
{
int x=h.top(); h.pop();
ans+=d[x];
if(!pre[x] && !nxt[x]) break;
if(!pre[x])
{
h.delx(nxt[x]);
pre[nxt[nxt[x]]]=;
}
else if(!nxt[x])
{
h.delx(pre[x]);
nxt[pre[pre[x]]]=;
}
else
{
h.delx(pre[x]);
h.delx(nxt[x]);
d[x]=d[pre[x]]+d[nxt[x]]-d[x];
h.push(x);
pre[x]=pre[pre[x]]; nxt[pre[x]]=x;
nxt[x]=nxt[nxt[x]]; pre[nxt[x]]=x;
}
}
cout<<ans<<endl;
}

本代码大量参考《算法竞赛进阶指南》给出的标程(我自己敲…已经敲自闭了……)。

这种在堆中存储唯一编码的方式,类似于二叉堆优化Dijkstra中二叉堆的写法,比直接在堆中存储结构体要灵活。

BZOJ 1150 - 数据备份Backup - [小顶堆][CTSC2007]的更多相关文章

  1. BZOJ1150 [CTSC2007]数据备份Backup 链表+小根堆

    BZOJ1150 [CTSC2007]数据备份Backup 题意: 给定一个长度为\(n\)的数组,要求选\(k\)个数且两两不相邻,问最小值是多少 题解: 做一个小根堆,把所有值放进去,当选择一个值 ...

  2. BZOJ1150 [CTSC2007] 数据备份Backup 贪心_堆_神题

    Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...

  3. bzoj 1150: [CTSC2007]数据备份Backup【链表+堆】

    参考:http://blog.csdn.net/Regina8023/article/details/44158947 神奇的做法.题意相当于若干个数取不相邻的k个使最小.先把数组差分,len表示这段 ...

  4. [BZOJ 1150] 数据备份

    Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1150 Solution: 思路和洛谷P1484完全相同 只不过将求最大不相邻的点权改为最 ...

  5. 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)

    1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...

  6. 【链表】bzoj 1150: [CTSC2007]数据备份Backup

    1150: [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1136  Solved: 458[Submit] ...

  7. 1150: [CTSC2007]数据备份Backup

    1150: [CTSC2007]数据备份Backup https://lydsy.com/JudgeOnline/problem.php?id=1150 分析: 堆+贪心. 每次选最小的并一定是最优的 ...

  8. bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆

    [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2727  Solved: 1099[Submit][Stat ...

  9. 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)

    [BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...

随机推荐

  1. 海量数据拆分到nosql系统的一种方案

    获取某用户的好友最新动态. 我们大体上来说先按照用户ID将用户的好友一致性哈希到几个mongodb集群,然后把用户的最新信息也存储到mongodb中.然后利用消息系统保持数据库中的数据和mongdb中 ...

  2. iOS开发之Xcode9报错 Compiling IB documents for earlier than iOS7 is no longer supported.

    升级到Xcode9时,最低的编译版本为iOS8,但是在使用一些SDK的时候就会报出Compiling IB documents for earlier than iOS7 is no longer s ...

  3. 如何禁止VS显示“You have mixed tabs and spaces. Fix this?”

    如何禁止VS显示“You have mixed tabs and spaces. Fix this?” VS2013 版本的解决方案: Vs2013  IDE下,编辑C++的工程源码,在打开文件的时候 ...

  4. Mac下软件包管理器-homebrew

    类似于redhat系统的yum,ubuntu的apt-get,mac系统下也有相应的包管理容器:homebrew.用法与apt-get.yum大同小异,都是对安装软件做一些安装删除类的命令行操作,以下 ...

  5. [C++]Qt文本操作(按行读写)

    资料来源:https://blog.csdn.net/flyfish1986/article/details/79487104 #include <QDebug> #include < ...

  6. java 的nio与io对比

    转:本文并非Java.io或Java.nio的使用手册,也不是如何使用Java.io与Java.nio的技术文档.这里只是尝试比较这两个包,用最简单的方式突出它们的区别和各自的特性.Java.nio提 ...

  7. 【emWin】例程三十一:窗口对象——Multipage

    简介: ULTIPAGE 类似于笔记本中的分隔卡或文件柜中的标签.通过使用MULTIPAGE 小工具,应用程序可为窗口或对话框的相同区域定义多个页面.每个页面包含特定 类型的信息或用户选择相应页面时应 ...

  8. 在Java API设计中,面向接口编程的思想,以及接口和工厂的关系

    现在的java API的设计中,提倡面向接口的编程,即在API的设计中,参数的传递和返回建议使用接口,而不是具体的实现类,如一个方法的输入参数类型应该使用Map接口,而不是HashMap或Hashta ...

  9. 挖坑:handoop2.6 开启kerberos(全流程学习记录)

    目录: 1.涉及插件简介 2.安装步骤 3.日志错误查看 1.kerberos是什么东西 度娘指导: Kerberos 是一种网络认证协议,其设计目标是通过密钥系统为 客户机 / 服务器 应用程序提供 ...

  10. Android Wifi 主动扫描 被动扫描

    介绍主动扫描,被动扫描以及连接的wifi的扫描过程 参考文档 <802.11无线网络权威指南> <80_Y0513_1_QCA_WCN36X0_SOFTWARE_ARCHITECTU ...