求:\(\sum_{i=1}^n\sum_{j=1}^m\mu(gcd(i,j))^2\)

化简可得\(\sum_{i=1}^{min(n,m)}{\lfloor \frac{n}{i} \rfloor}{\lfloor \frac{m}{i} \rfloor}\sum_{d|i}\mu(d)^2*\mu(\frac{i}{d})\)

有结论\(\sum_{d|n}\mu(d)^2*\mu(\frac{n}{d})=\sum_{i=1}^{\sqrt(n)}\mu(i)\)分块即可

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=4000000+10,maxn=200000+10,inf=0x3f3f3f3f; bool mark[N];
int prime[N],cnt,mu[N];
void init()
{
mu[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)
{
mu[i]+=mu[i-1];
mu[i]=(mu[i]%mod+mod)%mod;
}
}
int main()
{
init();
ll n,m,ans=0;
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
for(ll i=1,j;i<=n;i=j+1)
{
j=min(n/(n/i),m/(m/i));
ll t1=(mu[(int)sqrt(j)]-mu[(int)sqrt(i-1)]+mod)%mod,t2=(n/i)%mod,t3=(m/i)%mod;
add(ans,t1*t2%mod*t3%mod);
}
printf("%lld\n",ans);
return 0;
}
/******************** ********************/

loj#528. 「LibreOJ β Round #4」求和的更多相关文章

  1. Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)

    题目链接:https://loj.ac/problem/528 题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M ...

  2. LibreOJ #528. 「LibreOJ β Round #4」求和

    二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...

  3. [LOJ#531]「LibreOJ β Round #5」游戏

    [LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...

  4. [LOJ#530]「LibreOJ β Round #5」最小倍数

    [LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...

  5. [LOJ#516]「LibreOJ β Round #2」DP 一般看规律

    [LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...

  6. [LOJ#515]「LibreOJ β Round #2」贪心只能过样例

    [LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...

  7. [LOJ#525]「LibreOJ β Round #4」多项式

    [LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...

  8. [LOJ#526]「LibreOJ β Round #4」子集

    [LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...

  9. [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)

    [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...

随机推荐

  1. SpringCloud与Consul集成实现负载均衡

    一.背景 SpringCloud微服务目前比较流行,其中大都在使用的服务注册与发现是Eureka,最近研究了Consul的集群搭建,现使用Consul实现服务的负载均衡.其主要拓扑结构如下: 二.Co ...

  2. 学习使用JUnit4进行单元测试

    借用http://blog.csdn.net/andycpp/article/details/1327147等文章上面的例子和教程进行学习总结,自己敲了一遍代码,发现里面有些东西,可能版本原因,已经稍 ...

  3. (转) Dissecting Reinforcement Learning-Part.2

    Dissecting Reinforcement Learning-Part.2 Jan 15, 2017 • Massimiliano Patacchiola 原文链接:https://mpatac ...

  4. Twenty score

    1.上图中有两个人对读书的看法有较大的不同. There are two people in the cartoon who treat books in completely different w ...

  5. 【AI】微软人工智能学习笔记(二)

    微软Azure机器学习服务 01|机器学习概述 首先上一张图, 这个图里面的大神是谁我也不清楚反正,但是看起来这句话说得很有哲理就贴出来了. 所以在人工智能领域下面的这个机器学习,到底是一个什么样的概 ...

  6. C# linq 最大、最小对象的扩展

    public static class LinqExtension { public static T MaxBy<T, TR>(this IEnumerable<T> en, ...

  7. [转]QT中QString与string的转化,解决中文乱码问题

    QString str2qstr(const string str) { return QString::fromLocal8Bit(str.data()); } string qstr2str(co ...

  8. 《剑指offer》第四十四题(数字序列中某一位的数字)

    // 面试题44:数字序列中某一位的数字 // 题目:数字以0123456789101112131415…的格式序列化到一个字符序列中.在这 // 个序列中,第5位(从0开始计数)是5,第13位是1, ...

  9. Android 通过 JNI 访问 Java 字段和方法调用

    在前面的两篇文章中,介绍了 Android 通过 JNI 进行基础类型.字符串和数组的相关操作,并描述了 Java 和 Native 在类型和签名之间的转换关系. 有了之前那些基础,就可以实现 Jav ...

  10. DAY2 初识python

    一.编程语言介绍 1.1 机器语言:直接用计算机能理解的二进制指令编写程序,直接控制硬件 1.2 汇编语言:用英文标签取代二进制指令取编写程序,本质也是在直接控制硬件 1.3 高级语言:用人能理解的表 ...