Binary Search

T(n) = T(n/2) + O(1)   =>    T(n) = O(lg n)

proof:

如果能用iterable , 就用while loop, 可以防止用recursion的时候stack overflow( process in Linux is 8Mb), stack room is static for each process. (堆空间, heap room 是内存, 是动态的。)层数越多,存储更多中间/临时变量,最终超过系统配的stack空间,就会出现stack overflow。

建议:

  - 如果问题不复杂,能用iterable就用iterable

    - 如果问题比较复杂,还是用recursive吧

1) ask 是否有duplicates?

  1.1  如果没有duplicates

  标准的binary search:

  a) l + 1 < r   相当于如果l, r 相邻就跳出,这样能够避免死循环. 但是while loop之后需要加一个判断, 也就是d选项

  b) l + (r - l)//2      # 不用(l+r)//2 , 因为l + r 有可能overflow,强行装*,当l + r 之和超过int的最大值,2的32次方减1,会溢出。

  c) A[mid] ==, <, >    # 为了bug free, 建议举个小栗子, 然后画图去判断.

  d) A[l], A[r] ? target

  Code

  

def BinarySearch(self, nums, target):  # nums is sorted
if not nums or target < nums[0] or target > nums[-1]: return -1
l, r = 0, len(nums) -1 # note here is len(nums) -1
while l + 1 < r:
mid = l + (r - l)//2
if nums[mid] > target:
r = mid
elif nums[mid] < target:
l = mid
else:
return mid
if nums[l] == target:
return l
if nums[r] == target:
return r
return -1

  1.2 如果有duplicates

  a) ask 是first index, last index or dont matter?

    如果是first index:

      if A[mid] == target: r = mid

      最后判断 A[l] 和A[r] 的时候先判断 A[l]

    如果是last index:  

      if A[mid] == target: l = mid

      最后判断 A[l] 和A[r] 的时候先判断 A[r]

Questions:

[LeetCode] 704. Binary Search_Easy tag: Binary Search

[LeetCode] 374. Guess Number Higher or Lower_Easy tag: Binary Search   

[LeetCode] 34. Find First and Last Position of Element in Sorted Array == [LintCode] 61. Search for a Range_Easy tag: Binary Search   first index and last index  == target in duplicates.

[LeetCode] 35. Search Insert Position_Easy tag: Binary Search     first index >= target, without duplicates

[LeetCode] 278. First Bad Version_Easy tag: Binary Search      first index, without duplicates

[LeetCode] 162. Find Peak Element(852. Peak Index in a Mountain Array)_Medium tag: Binary Search

[LeetCode] 74. Search a 2D Matrix_Medium tag: Binary Search

[LeetCode] 240. Search a 2D Matrix II_Medium tag: Binary Search

[LeetCode] 69. Sqrt(x)_Easy tag: Binary Search

[LeetCode] 153. Find Minimum in Rotated Sorted Array_Medium tag: Binary Search   first index <= nums[-1]

[LeetCode] 154. Find Minimum in Rotated Sorted Array II_Hard tag: not real binary search anymore

 

[LeetCode] 33. Search in Rotated Sorted Array_Medium tag: Binary Search

[LeetCode] 81. Search in Rotated Sorted Array II_Medium tag: not real binary search anymore

[LeetCode] 702. Search in a Sorted Array of Unknown Size_Medium tag: Binary Search

[LeetCode] 4. Median of Two Sorted Arrays_Hard tag: Array, Binary Search

[LeetCode] questions conclusion_ Binary Search的更多相关文章

  1. [LeetCode] 95. Unique Binary Search Trees II 唯一二叉搜索树 II

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  2. [LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  3. [LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  4. [leetcode]95. Unique Binary Search Trees II给定节点形成不同BST的集合

    Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...

  5. [LeetCode] 95. Unique Binary Search Trees II(给定一个数字n,返回所有二叉搜索树) ☆☆☆

    Unique Binary Search Trees II leetcode java [LeetCode]Unique Binary Search Trees II 异构二叉查找树II Unique ...

  6. Java for LeetCode 095 Unique Binary Search Trees II

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  7. [LeetCode] 98. Validate Binary Search Tree_Medium

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

  8. [LeetCode] 270. Closest Binary Search Tree Value 最近的二叉搜索树的值

    Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...

  9. [LeetCode] Trim a Binary Search Tree 修剪一棵二叉搜索树

    Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that a ...

随机推荐

  1. 自定义元素 v1:可重用网络组件

    google文档 https://developers.google.cn/web/fundamentals/web-components/customelements 兼容性 https://can ...

  2. 【react】---context的基本使用新版---【巷子】

    一.全局定义context对象 globalContext.js import React from "react"; const GlobalContext = React.cr ...

  3. python爬虫之真实世界中的网页解析

    Request和Response Request是我们平常浏览网页,向网站所在的服务器发起请求,而服务器收到请求后,返回给我们的回应就是Response,这种行为就称为HTTP协议,也就是客户端(浏览 ...

  4. Jenkins设置备份

    安装备份插件,系统管理-插件管理 可选插件搜索backup 备份 系统管理-Backup manager 设置备份路径 恢复

  5. hdu3374 String Problem【最小表示法】【exKMP】

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  6. PL-SLAM

    双目 1.PL-SLAM: a Stereo SLAM System through the Combination of Points and Line Segments ubuntu14.04配置 ...

  7. [No0000F0]DataGrid一行Row添加ToolTip,wpf

    1. <Window x:Class="WpfApp7.MainWindow" xmlns="http://schemas.microsoft.com/winfx/ ...

  8. 看数据库的文件大小 MySQL Binlog日志的生成和清理规则

    小结: 1.避免并行大大事务对磁盘.内存的消耗: MySQL数据文件导致实例空间满的解决办法_空间/内存_常见问题_云数据库 RDS 版-阿里云 https://help.aliyun.com/kno ...

  9. iOS中Block的用法,举例,解析与底层原理(这可能是最详细的Block解析)

    1. 前言 Block:带有自动变量(局部变量)的匿名函数.它是C语言的扩充功能.之所以是拓展,是因为C语言不允许存在这样匿名函数. 1.1 匿名函数 匿名函数是指不带函数名称函数.C语言中,函数是怎 ...

  10. [daily][editer] 二进制编辑工具 hyx

    用了众多之后,终于发现了一个好用的二进制编辑工具: hyx https://yx7.cc/code/ https://en.wikipedia.org/wiki/Comparison_of_hex_e ...