reference:

1. Paper describes initializing the deconv layer with bilinear filter coefficients and train them. But in the provided train/val.prototxt, we can see lr_mult=0, which means, deconv layer is not trained. Any idea why and how does it affect the accuracy?

 
​ In further experiments​ on PASCAL VOC we found that learning the interpolation parameters made little difference, and fixing these weights gives a slight speed-up since the interpolation filter gradient can be skipped.
 
Keep in mind that there is only one channel per class in this particular architecture, so not that much is there to be learned except perhaps for the spatial extent of the kernel. The results for other data (with more scale variation) or other architectures (with more deconvolution channels and layers) could differ.
 

2. Previous fcn files used group=21 in the deconv layer. But now, they are removed. Any idea how does it affect the accuracy?

 
​ These are equivalent as long as these parameters are not learned. In the group case, the no. of groups is equal to the no. of channels so that each class is interpolated separately. ​In the no group case, only the "diagonal" of the weight matrix is initialized to the bilinear filter kernels so that each class is likewise interpolated separately with all cross-channel weights set to zero.
 
​Happy brewing,​

Evan Shelhamer

that is:

conv: N class

deconv:N class

N group

deconvolution layer parameter setting的更多相关文章

  1. 【论文学习】Is the deconvolution layer the same as a convolutional layer

    结合上升采样upsample和卷积操作.Sub-piexl convolution. Efficient Sub-pixel-convolutional-layers. LR network,即低分辨 ...

  2. Parameter setting for Jemeter Post method

    1. create CSV file note: the first line is parameter name 2. Add Controller Edit >Add >Logic C ...

  3. Caffe源码-Layer类

    Layer类简介 Layer是caffe中搭建网络的基本单元,caffe代码中包含大量Layer基类派生出来的各种各样的层,各自通过虚函数 Forward() 和 Backward() 实现自己的功能 ...

  4. 【caffe Layer】代码中文注释

    src/caffe/proto/caffe.proto 中LayerParameter部分 // NOTE // Update the next available ID when you add a ...

  5. 反卷积(deconvolution)

    deconvolution讲解论文链接:https://arxiv.org/abs/1609.07009 关于conv和deconvoluton的另一个讲解链接:http://deeplearning ...

  6. 一文搞懂 deconvolution、transposed convolution、sub-­pixel or fractional convolution

    目录 写在前面 什么是deconvolution convolution过程 transposed convolution过程 transposed convolution的计算 整除的情况 不整除的 ...

  7. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  8. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

  9. PHP7函数大全(4553个函数)

    转载来自: http://www.infocool.net/kb/PHP/201607/168683.html a 函数 说明 abs 绝对值 acos 反余弦 acosh 反双曲余弦 addcsla ...

随机推荐

  1. SQL - 常用的特殊查询

    sql 查询某字段不重复的全部记录: select * from table where fid in(Select min(fid) FROM table group by name) :

  2. [luogu P3384] [模板]树链剖分

    [luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...

  3. 水题系列一:Circle

    问题描述:Circle 小明在玩游戏,他正在玩一个套圈圈的游戏.他手里有 L 种固定半径的圆圈,每一种圆 圈都有其固定的数量.他要把这些圆圈套进 N 个圆形槽中的一个.这些圆形槽都有一个最 小半径和最 ...

  4. RocketMQ安装教程

    1.下载 http://mirror.bit.edu.cn/apache/rocketmq/ 2.安装 .tar.gz cd alibaba-rocketmq/bin chmod u+x * 3.配置 ...

  5. Dagger2不自动生成daggerXXXcomponent

    在Fragment里面初始化dagger2创建对象时,不自动生成daggerXXXcomponent. 百思不得其解,后来发现是import android.app.Fragment;所以不自动生成. ...

  6. JSP开发Web应用系统

    1.动态网站开发基础 1-1:动态网页 a.为什么需要动态网页(当我们需要修改网页内容的时候,都要重新上传一次覆盖原来的页面.而且,制作必须要通过专用的网页制作工具,比如:Dreamweaver.Fr ...

  7. vue 添加vux

    1.命令添加vux npm install vux --save 2.在build/webpack.base.conf.js中配置 const vuxLoader = require('vux-loa ...

  8. 给div添加锚点

    <div class="col-xs-3" id="myScrollspy"> <ul class="nav nav-tabs na ...

  9. chrome shortkeys

    [{"action":"scrolldownmore","activeInInputs":true,"blacklist" ...

  10. linux下grep命令详解

    参数: -a 或 --text : 不要忽略二进制的数据. -A<显示行数> 或 --after-context=<显示行数> : 除了显示符合范本样式的那一列之外,并显示该行 ...