一,问题描述

有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶。走到N阶楼梯,一共有多少种走法?

二,问题分析

DP之自顶向下分析方式:

爬到第N阶楼梯,一共只有三种情况(全划分,加法原理),从第N-1阶爬1阶到第N阶;从第N-2阶爬2阶到第N阶;从第N-3爬3阶到第N阶

故:way(N)=way(N-1)+way(N-2)+way(N-3)

这与求Fib数列非常相似,当然,其他类似的问题也可以这样求解。

初始条件:

way(1)=1

way(2)=2

way(3)=4

这里解释一下way(3)=4。爬到第3层一共有4种方式:每次爬一层,1+1+1=3;先爬一层,再爬二层,1+2=3;先爬二层,再爬一层,2+1=3;一次性爬三层。

三,代码实现

public class WaysOfLadder {

    public static int ways(int n){
if(n <= 0)
throw new IllegalArgumentException();
return waysLadder(n);
} //递归算法爬上第n阶楼梯一共需要多少种方式
private static int waysLadder(int n){
assert n > 0;
//base condition
if(n == 1)
return 1;
if(n == 2)
return 2;
if(n == 3)
return 4;
else
return waysLadder(n-1) + waysLadder(n - 2) + waysLadder(n - 3);
} //dp
public static int ways_dp(int n){
if(n <= 0)
throw new IllegalArgumentException(); int pre_1 = 1;
int pre_2 = 2;
int pre_3 = 4;
int res = 0;
for(int i = 4; i <= n; i++)
{
res = pre_1 + pre_2 + pre_3;
pre_1 = pre_2;
pre_2 = pre_3;
pre_3 = res;
}
return res;
} public static void main(String[] args) {
int n = 32;
System.out.println(ways_dp(n));
System.out.println(ways(n));
}
}

上面代码清晰地对比了DP实现与递归实现的方式。DP是用三个变量保存当前计算的结果,当计算下一个结果时,先“查表”再计算。而递归则是使用三个递归函数调用,递归函数调用计算了大量的重叠的子问题,每次递归调用都要压栈、出栈。递归的时间复杂度为O(3^N),而DP的时间复杂度为O(N)

类似的思想,还有计算杨辉三角的公式:C(n,r)=C(n-1,r) + C(n-1,r-1)具体可参考

只不过杨辉三角的计算公式有两个参数而已。

另外,相关问题可参考:组合问题与动态规划的联系之应用

动态规划之Fib数列类问题应用的更多相关文章

  1. FIB数列

    斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...

  2. bzoj5104: Fib数列

    Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10 ...

  3. UVaLive 3357 Pinary (Fib数列+递归)

    题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题 ...

  4. 【bzoj5118】Fib数列2 费马小定理+矩阵乘法

    题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...

  5. HDU3977 Evil teacher 求fib数列模p的最小循环节

    In the math class, the evil teacher gave you one unprecedented problem! Here f(n) is the n-th fibona ...

  6. 1022. Fib数列

    https://acm.sjtu.edu.cn/OnlineJudge/problem/1022 Description 定义Fib数列:1,1,2,3,5,8,13,…1,1,2,3,5,8,13, ...

  7. [bzoj5118]Fib数列2_费马小定理_矩阵乘法

    Fib数列2 bzoj-5118 题目大意:求Fib($2^n$). 注释:$1\le n\le 10^{15}$. 想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定 ...

  8. 【BZOJ5104】Fib数列(BSGS,二次剩余)

    [BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...

  9. @bzoj - 5104@ Fib数列

    目录 @description@ @solution@ @accepted code@ @details@ @description@ Fib数列为1,1,2,3,5,8... 求在Mod10^9+9 ...

随机推荐

  1. $().click()和$(document).on('click','要选择的元素',function(){})的不同

    1. $(选择器).click(fn) 当选中的选择器被点击时触发回调函数fn.只针对与页面已存在的选择器; 2.$(document).on('click','要选择的元素',function(){ ...

  2. children和childNodes 的区别

    1.childNodes 属性,标准的,它返回指定元素的子元素集合,包括html节点,所有属性,文本.可以通过nodeType来判断是哪种类型的节点,只有当nodeType==时才是元素节点,是属性节 ...

  3. 基于C#.NET的高端智能化网络爬虫(一)(反爬虫哥必看)

    前两天朋友发给我了一篇文章,是携程网反爬虫组的技术经理写的,大概讲的是如何用他的超高智商通过(挑衅.怜悯.嘲讽.猥琐)的方式来完美碾压爬虫开发者.今天我就先带大家开发一个最简单低端的爬虫,突破携程网超 ...

  4. jmeter属性与变量

    jmeter属性定义在jmeter.properties 文件中 更多详细说明: Getting Started - Configuring JMeter 属性是全局的,常用来定义一些jmeter使用 ...

  5. double转换为二进制

    arctan 在verilog 里是1qn或2qn格式,所以要把浮点数转换成1qn格式 1.dec2bin(十进制整数变为二进制) Convert decimal to binary number i ...

  6. appium学习记录 elements默认获取第一个元素

    封装 初始配置时候 要当做参数传入 element 发送的是一个元组 2  下标定位 当用elements进行定位时候 同时又有很多元素时候 默认获取第一个,但我们的元素是在后面时候 例如第四个 el ...

  7. BZOJ2215[Poi2011]Conspiracy——2-SAT+tarjan缩点

    题目描述 Byteotia的领土被占领了,国王Byteasar正在打算组织秘密抵抗运动.国王需要选一些人来进行这场运动,而这些人被分为两部分:一部分成为同谋者活动在被占领区域,另一部分是后勤组织在未被 ...

  8. Luogu4195 【模板】exBSGS(exBSGS)

    如果a和p互质,用扩欧求逆元就可以直接套用普通BSGS.考虑怎么将其化至这种情况. 注意到当x>=logp时gcd(ax,p)是一个定值,因为这样的话每个存在于a中的质因子,其在ax中的出现次数 ...

  9. 对 spi 的认知

    在使用 SPI 外设场景下,只需将数据送至 SPI->DR,外设将数据自动发走 在使用 DMA 外设场景下,只需指定数据缓存区地址及 SPI->DR 地址,这样就无需劳驾 CPU 而开始数 ...

  10. Linux中禁用命令历史记录

    关闭history记录功能 set +o history 打开history记录功能 set -o history 清空记录 history -c 记录被清空,重新登录后恢复. rm -f $HOME ...