动态规划之Fib数列类问题应用
一,问题描述
有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶。走到N阶楼梯,一共有多少种走法?
二,问题分析
DP之自顶向下分析方式:
爬到第N阶楼梯,一共只有三种情况(全划分,加法原理),从第N-1阶爬1阶到第N阶;从第N-2阶爬2阶到第N阶;从第N-3爬3阶到第N阶。
故:way(N)=way(N-1)+way(N-2)+way(N-3)
这与求Fib数列非常相似,当然,其他类似的问题也可以这样求解。
初始条件:
way(1)=1
way(2)=2
way(3)=4
这里解释一下way(3)=4。爬到第3层一共有4种方式:每次爬一层,1+1+1=3;先爬一层,再爬二层,1+2=3;先爬二层,再爬一层,2+1=3;一次性爬三层。
三,代码实现
public class WaysOfLadder { public static int ways(int n){
if(n <= 0)
throw new IllegalArgumentException();
return waysLadder(n);
} //递归算法爬上第n阶楼梯一共需要多少种方式
private static int waysLadder(int n){
assert n > 0;
//base condition
if(n == 1)
return 1;
if(n == 2)
return 2;
if(n == 3)
return 4;
else
return waysLadder(n-1) + waysLadder(n - 2) + waysLadder(n - 3);
} //dp
public static int ways_dp(int n){
if(n <= 0)
throw new IllegalArgumentException(); int pre_1 = 1;
int pre_2 = 2;
int pre_3 = 4;
int res = 0;
for(int i = 4; i <= n; i++)
{
res = pre_1 + pre_2 + pre_3;
pre_1 = pre_2;
pre_2 = pre_3;
pre_3 = res;
}
return res;
} public static void main(String[] args) {
int n = 32;
System.out.println(ways_dp(n));
System.out.println(ways(n));
}
}
上面代码清晰地对比了DP实现与递归实现的方式。DP是用三个变量保存当前计算的结果,当计算下一个结果时,先“查表”再计算。而递归则是使用三个递归函数调用,递归函数调用计算了大量的重叠的子问题,每次递归调用都要压栈、出栈。递归的时间复杂度为O(3^N),而DP的时间复杂度为O(N)
类似的思想,还有计算杨辉三角的公式:C(n,r)=C(n-1,r) + C(n-1,r-1)具体可参考:
只不过杨辉三角的计算公式有两个参数而已。
另外,相关问题可参考:组合问题与动态规划的联系之应用
动态规划之Fib数列类问题应用的更多相关文章
- FIB数列
斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...
- bzoj5104: Fib数列
Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10 ...
- UVaLive 3357 Pinary (Fib数列+递归)
题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题 ...
- 【bzoj5118】Fib数列2 费马小定理+矩阵乘法
题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...
- HDU3977 Evil teacher 求fib数列模p的最小循环节
In the math class, the evil teacher gave you one unprecedented problem! Here f(n) is the n-th fibona ...
- 1022. Fib数列
https://acm.sjtu.edu.cn/OnlineJudge/problem/1022 Description 定义Fib数列:1,1,2,3,5,8,13,…1,1,2,3,5,8,13, ...
- [bzoj5118]Fib数列2_费马小定理_矩阵乘法
Fib数列2 bzoj-5118 题目大意:求Fib($2^n$). 注释:$1\le n\le 10^{15}$. 想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定 ...
- 【BZOJ5104】Fib数列(BSGS,二次剩余)
[BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...
- @bzoj - 5104@ Fib数列
目录 @description@ @solution@ @accepted code@ @details@ @description@ Fib数列为1,1,2,3,5,8... 求在Mod10^9+9 ...
随机推荐
- [转帖] “王者对战”之 MySQL 8 vs PostgreSQL 10
原贴地址:https://www.oschina.net/translate/showdown-mysql-8-vs-postgresql-10?lang=chs&page=2# 英文原版地址 ...
- LY tomcat 的闪退问题
http://www.cnblogs.com/1693977889zz/archive/2018/04/06/8726920.html 在bin文件夹里打开此文件setclasspath.bat 举例 ...
- centos 7 修改系统屏幕分辨率
centos 7 修改系统屏幕分辨率,命令方式和图形方式的修改方法. 命令:xrandr 通过命令 xrandr 修改系统的分辨率,输入xrandr: bash [admin@localhost ~] ...
- Linux基础学习(8)--权限管理
第八章——权限管理 一.ACL权限 1.ACL权限简介与开启: (1)ACL权限简介: (2)查看分区ACL权限是否开启: (3)临时开启分区ACL权限: (4)永久开启分区ACL权限: 2.查看与设 ...
- PostgreSQL之连接数修改
当前总共正在使用的连接数 select count(1) from pg_stat_activity; 显示系统允许的最大连接数 show max_connections; 显示系统保留的用户数 sh ...
- Java微信二次开发(九)
多媒体文件上传与下载 第一步:找到包com.wtz.vo,新建类WeixinMedia.java package com.wtz.vo; /** * @author wangtianze QQ:864 ...
- mysql DDL&DML 语言
DDL:数据定义语言 CREATE, ALTER, DROP CREATE相关的常用命令: CREATE DATABASECREATE EVENTCREATE FUNCTIONCREATE FUNCT ...
- Ubuntu 18.10 版本发布
Ubuntu 是一个基于 Debian 的以桌面为主的 Linux 发行版,以其应用性而闻名.Ubuntu 提供三种官方版本:用于个人计算机的 Ubuntu 桌面,用于服务器和云的 Ubuntu 服务 ...
- 【BZOJ3456】城市规划(生成函数,多项式运算)
[BZOJ3456]城市规划(生成函数,多项式运算) 题面 求\(n\)个点的无向连通图个数. \(n<=130000\) 题解 \(n\)个点的无向图的个数\(g(n)=2^{C_n^2}\) ...
- 【BZOJ3507】通配符匹配(哈希,动态规划)
[BZOJ3507]通配符匹配(哈希,动态规划) 题面 BZOJ 题解 对于匹配唯一存在影响的只有通配符,而\(?\)的影响也并不大,所以唯一需要仔细考虑的是\(*\). 考虑一个\(dp\),设\( ...