http://poj.org/problem?id=1039

题意

有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入口处的(x1,y1),(x1,y1-1)之间射入,向四面八方传播,求解光线最远能传播到哪里(取x坐标)或者是否能穿透整个管道。

分析

最远的直线必定经过一个上折点和一个下折点。枚举这两个点即可。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std; const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
//两直线相交求交点
//第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
//只有第一个值为2时,交点才有意义
pair<int,Point> operator &(const Line &b)const
{
Point res = s;
if(sgn((s-e)^(b.s-b.e)) == )
{
if(sgn((s-b.e)^(b.s-b.e)) == )
return make_pair(,res);//重合
else return make_pair(,res);//平行
}
double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
res.x += (e.x-s.x)*t;
res.y += (e.y-s.y)*t;
return make_pair(,res);
}
};
//判断直线和线段相交
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= ;
} Point up[],down[];
int main()
{
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i < n;i++)
{
up[i].input();
down[i] = up[i];
down[i].y -= ;
}
bool flag = false;//穿过所有的标记
double ans = -10000000.0;
int k;
for(int i = ;i < n;i++)
{
for(int j = ;j < n;j++)
{
for(k = ;k < n;k++) //直线L最大延伸到第k-1节管子
if(Seg_inter_line(Line(up[i],down[j]),Line(up[k],down[k])) == false)
break;
if(k >= n)
{
flag = true;
break;
}
if(k > max(i,j)) //由于不清楚L究竟是与第k-1节管子的上管壁还是下管壁相交,因此都计算交点,取最优
{
if(Seg_inter_line(Line(up[i],down[j]),Line(up[k-],up[k])))
{
pair<int,Point>pr = Line(up[i],down[j])&Line(up[k-],up[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
if(Seg_inter_line(Line(up[i],down[j]),Line(down[k-],down[k])))
{
pair<int,Point>pr = Line(up[i],down[j])&Line(down[k-],down[k]);
Point p = pr.second;
ans = max(ans,p.x);
}
}
}
if(flag)break;
}
if(flag)printf("Through all the pipe.\n");
else printf("%.2lf\n",ans);
}
return ;
}

POJ - 1039 Pipe(计算几何)的更多相关文章

  1. poj 1039 Pipe (Geometry)

    1039 -- Pipe 理解错题意一个晚上._(:з」∠)_ 题意很容易看懂,就是要求你求出从外面射进一根管子的射线,最远可以射到哪里. 正解的做法是,选择上点和下点各一个,然后对于每个折点位置竖直 ...

  2. poj 1039 Pipe(叉乘。。。)

    题目:http://poj.org/problem?id=1039 题意:有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从 ...

  3. POJ 1039 Pipe【经典线段与直线相交】

    链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. 简单几何(直线与线段相交) POJ 1039 Pipe

    题目传送门 题意:一根管道,有光源从入口发射,问光源最远到达的地方. 分析:黑书上的例题,解法是枚举任意的一个上顶点和一个下顶点(优化后),组成直线,如果直线与所有竖直线段有交点,则表示能穿过管道. ...

  5. POJ 1039 Pipe(直线和线段相交判断,求交点)

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8280   Accepted: 2483 Description ...

  6. POJ 1039 Pipe

    题意:一根管子,中间有一些拐点,给出拐点的上坐标,下坐标为上坐标的纵坐标减1,管子不能透过光线也不能折射光线,问光线能射到最远的点的横坐标. 解法:光线射到最远处的时候一定最少经过两个拐点,枚举每两个 ...

  7. poj 1039 Pipe(几何基础)

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9932   Accepted: 3045 Description ...

  8. POJ 1039 Pipe 枚举线段相交

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9493   Accepted: 2877 Description ...

  9. POJ 1039 Pipe | 线段相交

    题目: 给一个管子,有很多转弯处,问从管口的射线射进去最长能射到多远 题解: 根据黑书,可以证明的是这条光线一定经过了一个上顶点和下顶点 所以我们枚举每对上下顶点就可以了 #include<cs ...

随机推荐

  1. Linux命令博客目录

    Linux 目录结构 Linux命令(一) pwd ,cd Linux命令(二) 复制文件 cp Linux命令(三) 移动文件 mv Linux命令(四)删除文件 rm Linux终端常用快捷键 L ...

  2. 【历史】- Windows NT 之父 - David Cutler

    David Cutler,大卫·卡特勒,一位传奇程序员,1988年去微软前号称硅谷最牛的内核开发人员,是VMS和Windows NT的首席设计师,被人们成为“操作系统天神”.他曾供职于杜邦.DEC等公 ...

  3. Spring 入门知识点笔记整理

    一.Spring 概述 1. 什么是spring? Spring 是个java企业级应用的开源开发框架.Spring主要用来开发Java应用,但是有些扩展是针对构建J2EE平台的web应用.Sprin ...

  4. Java ThreadLocal 理解

    ThreadLocal 概念: ThreadLocal不是用来解决对象共享访问的问题,而主要是提供了保存对象的方法和避免参数传递的方便的对象访问方式. ThreadLocal并不是一个Thread,而 ...

  5. ZJOI2019 Day1 题解

    想要继续向前,就从克服内心的恐惧开始. 麻将 题意 在麻将中,我们称点数连续的三张牌或三张点数一样的成为面子,称两张点数一样的牌为对子.一副十四张麻将牌的胡牌条件是可以分成四个面子和一个对子或者分成七 ...

  6. iOS开发中@property的属性weak nonatomic strong readonly等

    请看  https://www.cnblogs.com/liubeimeng/p/4244686.html

  7. BZOJ2152[国家集训队]聪聪可可——点分治

    题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...

  8. UVALive5874 - Social Holidaying-二分图匹配/匈牙利算法

    有n个家庭,m个房间,一个房间只能两个家庭住.求最大匹配. 比较标准的二分图问题.先初始化把可能的家庭建边,然后跑一边匈牙利算法. 最后的答案是最大匹配数/2,因为建图时有重复. #include & ...

  9. MT【229】最小值函数

    已知定义域为$R$的函数,$f(x),g(x)$满足:$f(x)+g(x)=e^{-x^2+1}$,则$min\{f(x),g(x)\}$的最大值为______ 解答:$min\{f(x),g(x)\ ...

  10. 自学Aruba6.3-账号管理(web页面配置)

    点击返回:自学Aruba之路 自学Aruba6.3-账号管理(web页面配置) 1 管理员账号管理 Configuration---Administrator中 角色名称 说明 root 该角色允许管 ...