<题目链接>

题目大意:
给你一棵树,任意去除某一个点后,树被分成了几个联通块,则该点的平衡值为所有分成的连通块中,点数最大的那个,问你:该树所有点中,平衡值最小的那个点是什么?

解题分析:

运用DFS,找到以u为根节点,所有子节点数的最大值,然后求出这些最大值的最小值。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 2e4+;
struct Edge{
int to,next;
}edge[MAXN*]; //注意这里要*2,因为要存双向边 int head[MAXN],tot;
void init(){
memset(head,-,sizeof(head));
tot = ;
}
void addedge(int u,int v){
edge[tot].to = v;edge[tot].next = head[u];
head[u] = tot++;
}
int dp[MAXN],num[MAXN];
int n; void dfs(int u,int pre){
dp[u] = ;num[u] = ;
for(int i = head[u];i != -;i = edge[i].next){
int v = edge[i].to;
if(v == pre)continue; //如果下一个点是u的父亲(即刚刚走过的点),那么跳过,防止下一步dfs(v,u)遍历该无向图时,不停的在两个点之间来回遍历
dfs(v,u); //继续从它的子节点开始向下搜索
dp[u] = max(dp[u],num[v]); //dp[u]指的是u的每个子节点方向所对应的最大节点数的最大值
num[u] += num[v];
}
//num[u]此时代表除父节点方向外的所有子节点数(包括它本身,,因为num[u]初始化为1)
dp[u] = max(dp[u],n - num[u]); //n-num[u]指的是dp[u]父节点方向的节点数
} int main(){
int T;scanf("%d",&T);
int u,v;
while(T--){
scanf("%d",&n);
init();
for(int i = ;i < n;i++){
scanf("%d%d",&u,&v);
addedge(u,v);addedge(v,u);
}
dfs(,-);
int loc=-,ans=1e9;
for(int i=;i<=n;i++){
if(ans>dp[i])
ans=dp[i],loc=i;
}
printf("%d %d\n",loc,ans);
}
return ;
}

2018-08-17

POJ 1655 Balancing Act (求树的重心)【树形DP】(经典)的更多相关文章

  1. POJ 1655 Balancing Act(求树的重心--树形DP)

    题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...

  2. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  3. POJ 1655 Balancing Act (树的重心,常规)

    题意:求树的重心,若有多个重心,则输出编号较小者,及其子树中节点最多的数量. 思路: 树的重心:指的是一个点v,在删除点v后,其子树的节点数分别为:u1,u2....,设max(u)为其中的最大值,点 ...

  4. POJ 1655 BalanceAct 3107 Godfather (树的重心)(树形DP)

    参考网址:http://blog.csdn.net/acdreamers/article/details/16905653   树的重心的定义: 树的重心也叫树的质心.找到一个点,其所有的子树中最大的 ...

  5. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  6. POJ 1655 Balancing Act【树的重心模板题】

    传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...

  7. POJ 1655 - Balancing Act - [DFS][树的重心]

    链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...

  8. POJ 1655 Balancing Act ( 树的重心板子题,链式前向星建图)

    题意: 给你一个由n个节点n-1条边构成的一棵树,你需要输出树的重心是那个节点,以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的 题解: 树的重心定义:找到一个点,其所 ...

  9. POJ 1655 Balancing Act 焦点树

    标题效果:鉴于一棵树.除去一个点之后,这棵树将成为一些中国联通的块.之后该点通过寻求取消最低形成块的最大数目. 思维:树DP思维.通过为每个子树尺寸的根节点深搜索确定.之后该节点然后除去,,还有剩下的 ...

随机推荐

  1. hdfs haadmin命令

    HA集群启动后,我们可以通过一些指令来管理HDFS集群."bin/hdfs haadmin -DFSHAAdmin"指令,其可选参数: 1.-transitionToActive ...

  2. ARMV8 datasheet学习笔记4:AArch64系统级体系结构之存储模型

    1.前言 关于存储系统体系架构,可以概述如下: 存储系统体系结构的形式 VMSA 存储属性   2. 存储系统体系结构 2.1.    地址空间 指令地址空间溢出 指令地址计算((address_of ...

  3. v4l2功能列表大全【转】

    一,功能参考 目录 V4L2 close() - 关闭一个V4L2设备 V4L2 ioctl() - 创建的V4L2设备 ioctl VIDIOC_CROPCAP - 视频裁剪和缩放功能信息 ioct ...

  4. ES系列十六、集群配置和维护管理

    一.修改配置文件 1.节点配置 1.vim elasticsearch.yml # ======================== Elasticsearch Configuration ===== ...

  5. 【转】如何安装JDK以及配置Java运行环境

    具体的参考这篇博文就好了~~!http://www.cnblogs.com/liu-en-ci/p/6743106.html

  6. CentOS6.5环境使用keepalived实现nginx服务的高可用性及配置详解

    keepalived基础概念    Keepalived是一个基于VRRP协议来实现的WEB服务高可用方案,可以利用其来避免单点故障.一个WEB服务至少会有2台服务器运行Keepalived,一台为主 ...

  7. tomcat6和tomcat7管理用户manager配置

    tomcat用户登录文件配置 如果想要对部署在tomcat上的项目进行管理查看,需要在tomcat安装目录conf文件夹下的tomcat-user.xml里添加用户登录权限.具体添加的内容如下: To ...

  8. 实现div里的内容垂直居中

    ---恢复内容开始--- 在项目中我们会遇到这种情况,一个div的宽固定,里面的内容长度不定,不管是一行还是多行,都要垂直居中,有俩个实现方法: 1.使用absolute,top:50%,transf ...

  9. Ant+Jmeter自动化接口测试的部署 及 部署过程中的坑

    一.环境准备: 1.Jdk1.6或以上:http://www.oracle.com/technetwork/java/javase/downloads/index.html    配置环境变量-系统变 ...

  10. vue+element之多表单验证

    方法一:利用promise var p1=new Promise(function(resolve, reject) { this.$refs[form1].validate((valid) => ...