自适应阈值二值化之最大类间方差法(大津法,OTSU)
最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。对于图像I(x,y),前景(即目标)和背景的分割阈值记作Th,属于前景的像素点数占整幅图像的比例记为w1,其平均灰度G1;背景像素点数占整幅图像的比例为w2,其平均灰度为G2。图像的总平均灰度记为G_Ave,类间方差记为 g。
假设图像的背景较暗,并且图像的大小为MXN,图像中像素的灰度值小于阈值的像素个数记作N1,像素灰度大于阈值的像素个数记作N2,则有:
采用遍历的方法得到使类间方差最大的阈值,即为所求。
代码如下:
(C文件)
#include <stdio.h>
#include <math.h>
#include "myOtsu.h"
typedef unsigned char uchar;
int myOtsu(const IplImage *frame) //大津法求阈值
{
#define GrayScale 256 //frame灰度级
int width = frame->width;
int height = frame->height;
int pixelCount[GrayScale]={};
float pixelPro[GrayScale]={};
int i, j, pixelSum = width * height, threshold = ;
float w0, w1, u0tmp, u1tmp, u0, u1, deltaTmp, deltaMax = ;
uchar* data = (uchar*)frame->imageData; //统计每个灰度级中像素的个数
for(i = ; i < height; i++)
{
for(j = ;j < width;j++)
{
pixelCount[(int)data[i * width + j]]++;
}
} //计算每个灰度级的像素数目占整幅图像的比例
for(i = ; i < GrayScale; i++)
{
pixelPro[i] = (float)pixelCount[i] / pixelSum;
} for(i = ; i < GrayScale; i++)//遍历所有从0到255灰度级的阈值分割条件,测试哪一个的类间方差最大
{
w0 = w1 = u0tmp = u1tmp = u0 = u1 = deltaTmp = ;
for(j = ; j < GrayScale; j++)
{
if(j <= i) //背景部分
{
w0 += pixelPro[j];
u0tmp += j * pixelPro[j];
}
else //前景部分
{
w1 += pixelPro[j];
u1tmp += j * pixelPro[j];
}
}
u0 = u0tmp / w0;
u1 = u1tmp / w1;
deltaTmp = (float)(w0 *w1* pow((u0 - u1), )) ;
if(deltaTmp > deltaMax)
{
deltaMax = deltaTmp;
threshold = i;
}
}
return threshold;
}
(H文件)
#ifndef MYOTSU_H_
#define MYOTSU_H_
typedef struct {
int width;
int height;
unsigned char imageData;
}IplImage;
extern int myOtsu(const IplImage *frame);
#endif /*MYOTSU_H_*/
大家转载请注明出处!谢谢!
在这里要感谢GISPALAB实验室的各位老师和学长学姐的帮助!谢谢~
自适应阈值二值化之最大类间方差法(大津法,OTSU)的更多相关文章
- 【转】Emgu CV on C# (五) —— Emgu CV on 局部自适应阈值二值化
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自< ...
- [转载+原创]Emgu CV on C# (五) —— Emgu CV on 局部自适应阈值二值化
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自< ...
- Wellner 自适应阈值二值化算法
参考文档: Adaptive Thresholding for the DigitalDesk.pdf Adaptive Thresholding Using the Integral I ...
- [转载+原创]Emgu CV on C# (四) —— Emgu CV on 全局固定阈值二值化
重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数) 1.概述 图像二值化是图像处理中的一项基本技术,也 ...
- OpenCV图像的全局阈值二值化函数(OTSU)
cv::threshold(GrayImg, Bw, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);//灰度图像二值化 CV_THRESH_OTSU是提取图像最 ...
- 图像处理------基于Otsu阈值二值化
一:基本原理 该方法是图像二值化处理常见方法之一,在Matlab与OpenCV中均有实现. Otsu Threshing方法是一种基于寻找合适阈值实现二值化的方法,其最重 要的部分是寻找图像二值化阈值 ...
- OpenCV_基于局部自适应阈值的图像二值化
在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...
- python实现图像二值化
1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是 ...
- 图像二值化----otsu(最大类间方差法、大津算法)
最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定的方法,又叫大津 法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间的类间方差越大,说明构成图像 ...
随机推荐
- PyCharm的调试
1.设置断点 2.debug模式运行 F8 下一行代码 查看当前位置所有局部变量:print(locals()) 查看全局变量: print( ...
- <hr />改变颜色
其实,<hr />是有默认的border的,改变border颜色即可改变hr颜色. 例如: <hr style="position: relative;top: 2.3re ...
- Java SE之Java工作原理
在Java中引入了虚拟机的概念,即在机器和编译程序之间加入了一层抽象的虚拟的机器.这台虚拟的机器在任何平台上都提供给编译程序一个的共同的接口.编译程序只需要面向虚拟机,生成虚拟机能够理解的代码,然后 ...
- luogu P3191 [HNOI2007]紧急疏散EVACUATE
传送门 qwq这题好大力 首先可以预处理出每个人到每个门前面那个格子的最早时间,然后答案如果比最小答案大的话也是合法的,所以可以二分最终答案.检查\(mid\)是否合法就考虑每个人要去哪个门才会合法, ...
- 第16月第10天 poco target
1. void TCPServer::start() { poco_assert (_stopped); _stopped = false; _thread.start(*this); } void ...
- Responsive响应式设计
在IE6-8中完全是不支持CSS3 Media Queries的.那么为了让IE6-8支持,我们就很有必要的在IE9以下的浏览器中加上media-queries.js或者respond.js脚本: & ...
- CentOS 6.8 部署django项目二
CentOS 6.8 部署django项目一 1.项目部署后发现部分页面的样式丢失,是因为在nginx中配置的static路径中未包含. 解决:在settinfs.py中添加: STATIC_ROOT ...
- Linux的capability深入分析(2)【转】
转自:https://blog.csdn.net/wangpengqi/article/details/9821231 rpm -ql libcap-2.16-5.2.el6.i686 /lib/l ...
- SharePoint 2010:搜索服务当前处于脱机状态
错误 搜索服务当前处于脱机状态.请访问 SharePoint 管理中心中的"服务器上的服务"页,以验证是否启用了该服务.这也可能是由于正在移动索引器所致. 正在配置网站集搜索关 ...
- java比较两个对象是否相等?
1.判断两个对象是否是同一个引用对象则用==,"=="比的是地址.因为如果地址相同,则就是同一个对象(java中如果两对象(obj1,obj2)相等,那么在修改obj2的时候,ob ...