题目大意:基于汉诺塔原型,第一根柱子上有n个盘子,从上至下编号从1依次递增至n。在最佳移动方案中,第m次所移动的盘子的编号。

解题思路:模拟必然是会超时的。但根据汉诺塔的递归原理,容易发现,对于n阶汉诺塔,将第一个盘从A柱移动到B柱是一步,将前两个盘从A柱移动到B柱是3步,以此类推,将n个盘从A柱移动到B柱的步数是2^n-1步。而第m步必然在以上递推的值所划分出来的区间之中。查找到区间i后,可以发现,我们把问题缩小为求n-i阶汉诺塔的第m-(used[i]+1)步。同时,如果发现第m步正好是i阶汉诺塔移动后的下一步,那必然是移动i+1号盘子,若正好是i阶汉诺塔移动的步数,那就必然是1号盘子,这就是递归的边界了。

每一阶所需的步数可以用公式快速得出并预缓存,相对于模拟,这种区间查找,缩小范围的方法极大地降低了时间复杂度。

 #include <iostream>
using namespace std;
long long int cache[];
int flag=;
void find(long long int m)
{
int i;
for(i=;i<=;i++)
{
if(cache[i]==m)
{
flag=;
return;
}
if(cache[i]<m&&m<cache[i+])
{
if((cache[i]+)==m)
{
flag=i+;
return;
}
else
{
find(m-(cache[i]+));
}
}
}
}
int main() {
int i;
cache[]=;
for(i=;i<=;i++)
{
cache[i]=cache[i-]*+;
}
long long int n,m;
while(cin>>n>>m)
{
if(n==&&m==)
break;
flag=;
find(m);
cout<<flag<<endl;
}
return ;
}

HDOJ-2175 汉诺塔IX的更多相关文章

  1. HDU 2175 汉诺塔IX (递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2175 1,2,...,n表示n个盘子.数字大盘子就大.n个盘子放在第1根柱子上.大盘不能放在小盘上.  ...

  2. HDU 2175 汉诺塔IX

    http://acm.hdu.edu.cn/showproblem.php?pid=2175 Problem Description 1,2,...,n表示n个盘子.数字大盘子就大.n个盘子放在第1根 ...

  3. 汉诺塔IX

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=76447#problem/E 汉诺塔IX Time Limit:1000MS     Me ...

  4. hdu2175汉诺塔IX

    汉诺塔IX Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. HDOJ.2064 汉诺塔III

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  6. 汉若塔系列续:汉诺塔VIII、汉诺塔IX、汉诺塔X。

    汉诺塔VIII,在经典汉若塔问题上,问n个盘子的情况下,移动m次以后,是什么状态.(与第七代互为逆命题) 我的思路:本质还是dfs,但是用m的值来指引方向,每搜一层确定第i个盘子在哪个塔,o(n)的算 ...

  7. HDOJ 1995 汉诺塔V

    Problem Description 用1,2,-,n表示n个盘子,称为1号盘,2号盘,-.号数大盘子就大.经典的汉诺塔问 题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔 ...

  8. [acm]HDOJ 2064 汉诺塔III

    题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=2064 汉诺塔变种,只能从中间专业,递归关系为:f(n)=3*f(n-1)+2. //汉诺塔变种,只能 ...

  9. HDU汉诺塔系列

    这几天刷了杭电的汉诺塔一套,来写写题解. HDU1207 汉诺塔II HDU1995 汉诺塔V HDU1996 汉诺塔VI HDU1997 汉诺塔VII HDU2064 汉诺塔III HDU2077  ...

随机推荐

  1. topcoder srm 445 div1

    problem1 link 这个的结论是只需要考虑坐标是整数或者是整数.5,比如(2.5,3),(4,3.5),(1.5,4.5)这样的时候.这个详细证明起来应该挺麻烦的.这里有一些讨论. probl ...

  2. SVM学习笔记3-问题转化

    在1中,我们的求解问题是:$min_{w,b}$ $\frac{1}{2}||w||^{2}$,使得$y^{(i)}(w^{T}x^{(i)}+b)\geq 1 ,1 \leq i \leq n$ 设 ...

  3. CSS的再深入(更新中···)

    在上一章我们提到了一个新的概念,叫做块级样式,讲到这里就要科普一下: 标签又分为两种: (1)块级标签 元素特征:会独占一行,无论内容多少,可以设置宽高··· (2)内敛标签(又叫做行内标签) 元素特 ...

  4. Android.bp 添加宏开关【转】

    本文转载自:https://github.com/zzb2760715357/document/blob/master/android_doc/Android.bp%E6%B7%BB%E5%8A%A0 ...

  5. Btrfs管理及应用

    一.btrfs基本概念 btrfs文件系统是2007年Oracle开发,支持GPL协议,为了取代Linux早期的ext系列文件系统. btrfs核心特性: 多物理卷支持:btrfs可由多个底层物理卷组 ...

  6. extern 用法,全局变量与头文件(重复定义)

    转自 https://www.cnblogs.com/chengmin/archive/2011/09/26/2192008.html 当你要引用一个全局变量的时候,你就要声明,extern int  ...

  7. 【重新分配分片】Elasticsearch通过reroute api重新分配分片

    elasticsearch可以通过reroute api来手动进行索引分片的分配. 不过要想完全手动,必须先把cluster.routing.allocation.disable_allocation ...

  8. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  9. WEB安全学习二、注入工具 sqlmap的使用

    使用的是Kali Linux 系统,系统中默认的sqlmap 是安装好了的,电脑上没有安装sqlmap,自己百度  ,需要python的环境 使用 命令   sqlmap -h 可以查看   sqlm ...

  10. springmvc上传zip文件并解压缩代码示例

    <input type="file"  id="file"  name="file"> spring中的配置: <!-- ...