A string t is called nice if a string "2017" occurs in t as a subsequence but a string "2016" doesn't occur in t as a subsequence. For example, strings "203434107" and "9220617" are nice, while strings "20016", "1234" and "20167" aren't nice.

The ugliness of a string is the minimum possible number of characters to remove, in order to obtain a nice string. If it's impossible to make a string nice by removing characters, its ugliness is  - 1.

Limak has a string s of length n, with characters indexed 1 through n. He asks you q queries. In the i-th query you should compute and print the ugliness of a substring (continuous subsequence) of s starting at the index ai and ending at the index bi (inclusive).

Input

The first line of the input contains two integers n and q (4 ≤ n ≤ 200 000, 1 ≤ q ≤ 200 000) — the length of the string s and the number of queries respectively.

The second line contains a string s of length n. Every character is one of digits '0'–'9'.

The i-th of next q lines contains two integers ai and bi (1 ≤ ai ≤ bi ≤ n), describing a substring in the i-th query.

Output

For each query print the ugliness of the given substring.

Examples
input
8 3
20166766
1 8
1 7
2 8
output
4
3
-1
input
15 5
012016662091670
3 4
1 14
4 15
1 13
10 15
output
-1
2
1
-1
-1
input
4 2
1234
2 4
1 2
output
-1
-1
Note

In the first sample:

  • In the first query, ugliness("20166766") = 4 because all four sixes must be removed.
  • In the second query, ugliness("2016676") = 3 because all three sixes must be removed.
  • In the third query, ugliness("0166766") =  - 1 because it's impossible to remove some digits to get a nice string.

In the second sample:

  • In the second query, ugliness("01201666209167") = 2. It's optimal to remove the first digit '2' and the last digit '6', what gives a string "010166620917", which is nice.
  • In the third query, ugliness("016662091670") = 1. It's optimal to remove the last digit '6', what gives a nice string "01666209170".

题目大意

  给定一个长度为$n$的数字串。每次询问一个区间至少要删除多少个数字使得包含子序列"2017"但不包含子序列"2016",无解输出-1。

  dp是显然的。

  因为每次询问一个区间,所以需要把dp状态扔到某个数据结构上。先考虑线段树。

  线段树更新的时候是拿两段的信息合并,所以不能像做1~n的dp那样记录状态。

  考虑2017之间的间隔:

| 2 | 0 | 1 | 7 |

0   1   2   3   4

  线段树的每个节点存一个矩阵$A$。$a_{ij}$表示使原串的子序列包含2017中第$i$个间隔到第$j$个间隔组成的子串,但不包含严格包含它的子序列最少需要删除的数字、

  转移是显然的,和区间dp一样。枚举区间,枚举中间点,然后转移就好了。

  考虑初值问题,显然的是非2、0、1、7、6的数字对答案不影响,所以令$a_{ii} = 0$,$a_{ij} = \infty \ \ \  \left ( i \neq j \right )$。

  考虑当前数字是2的时候,如果我希望只包含子串$[0, 0]$(这里表示两个间隔间的子串),那么就必须删掉这个2,故$a_{00} = 1$,如果希望包含子串$[0, 1]$,那么什么都不用做,所以$a_{01} = 0$。对于0、1、7同理。

  考虑当前数字是6的时候,那么遇到子串$[i, 3]$希望转移回自己,那么需要付出1的代价,因为否则会包含子序列"2016",同样如果遇到子串$[i, 4]$希望转移回自己,那么也需要付出1的代价。

  由于很早以前过的这道题,所以不想重写一份,代码有点丑,请谅解。

Code

 /**
* Codeforces
* Problem#750E
* Accepted
* Time: 998ms
* Memory: 49276k
*/
#include<iostream>
#include<fstream>
#include<sstream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cctype>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<malloc.h>
#ifndef WIN32
#define AUTO "%lld"
#else
#define AUTO "%I64d"
#endif
using namespace std;
typedef bool boolean;
#define inf 0xfffffff
#define smin(a, b) (a) = min((a), (b))
#define smax(a, b) (a) = max((a), (b))
template<typename T>
inline void readInteger(T& u){
char x;
int aFlag = ;
while(!isdigit((x = getchar())) && x != '-' && x != -);
if(x == -) return;
if(x == '-'){
x = getchar();
aFlag = -;
}
for(u = x - ''; isdigit((x = getchar())); u = (u << ) + (u << ) + x - '');
ungetc(x, stdin);
u *= aFlag;
} typedef class Matrix {
public:
int mat[][]; //0: 1:2 2:20 3:201 4:2017
Matrix(){ }
Matrix(char x){
for(int i = ; i <= ; i++)
for(int j = ; j <= ; j++)
mat[i][j] = (i == j) ? () : (inf);
if(x == '') mat[][] = , mat[][] = ;
else if(x == '') mat[][] = , mat[][] = ;
else if(x == '') mat[][] = , mat[][] = ;
else if(x == '') mat[][] = , mat[][] = ;
else if(x == '') mat[][] = , mat[][] = ;
} Matrix operator +(Matrix x) {
Matrix res;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++){
res.mat[i][j] = inf;
for(int k = ; k < ; k++)
smin(res.mat[i][j], mat[i][k] + x.mat[k][j]);
}
return res;
}
}Matrix; typedef class SegTreeNode {
public:
Matrix a;
SegTreeNode* left, *right;
SegTreeNode():left(NULL), right(NULL){ }
SegTreeNode(char x):left(NULL), right(NULL){
a = Matrix(x);
} void pushUp() {
a = left->a + right->a;
}
}SegTreeNode; typedef class SegTree {
public:
SegTreeNode* root;
SegTree():root(NULL){ }
SegTree(int size, char* str){
build(root, , size, str);
} void build(SegTreeNode*& node, int l, int r, char* list){
if(l == r){
node = new SegTreeNode(list[l]);
return;
}
node = new SegTreeNode();
int mid = (l + r) >> ;
build(node->left, l, mid, list);
build(node->right, mid + , r, list);
node->pushUp();
} Matrix query(SegTreeNode*& node, int l, int r, int from, int end) {
if(l == from && r == end) return node->a;
int mid = (l + r) >> ;
if(end <= mid) return query(node->left, l, mid, from, end);
if(from > mid) return query(node->right, mid + , r, from, end);
return query(node->left, l, mid, from, mid) + query(node->right, mid + , r, mid + , end);
}
}SegTree; int n, q;
char* str;
SegTree st; inline void init() {
readInteger(n);
readInteger(q);
str = new char[(const int)(n + )];
scanf("%s", str + );
st = SegTree(n, str);
} inline void solve() {
int a, b;
while(q--) {
readInteger(a);
readInteger(b);
Matrix c = st.query(st.root, , n, a, b);
printf("%d\n", (c.mat[][] == inf) ? (-) : (c.mat[][]));
}
} int main() {
init();
solve();
return ;
}

Codeforces 750E New Year and Old Subsequence - 线段树 - 动态规划的更多相关文章

  1. Codeforces 750E New Year and Old Subsequence 线段树 + dp (看题解)

    New Year and Old Subsequence 第一感觉是离线之后分治求dp, 但是感觉如果要把左边的dp值和右边的dp值合起来, 感觉很麻烦而且时间复杂度不怎么对.. 然后就gun取看题解 ...

  2. Codeforces 750E - New Year and Old Subsequence(线段树维护矩阵乘法,板子题)

    Codeforces 题目传送门 & 洛谷题目传送门 u1s1 我做这道 *2600 的动力是 wjz 出了道这个套路的题,而我连起码的思路都没有,wtcl/kk 首先考虑怎样对某个固定的串计 ...

  3. [Codeforces 750E]New Year and Old Subsequence

    Description 题库链接 给出一个长度为 \(n\) 的仅包含数字的字符串. \(q\) 次询问,每次询问该串 \([a,b]\) 段内删去几个数能够使其不含 \(2016\) 的子串,但存在 ...

  4. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  5. Codeforces Codeforces Round #316 (Div. 2) C. Replacement 线段树

    C. ReplacementTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/570/problem ...

  6. CodeForces 587 E.Duff as a Queen 线段树动态维护区间线性基

    https://codeforces.com/contest/587/problem/E 一个序列, 1区间异或操作 2查询区间子集异或种类数 题解 解题思路大同小异,都是利用异或的性质进行转化,st ...

  7. Codeforces 558E A Simple Task (计数排序&&线段树优化)

    题目链接:http://codeforces.com/contest/558/problem/E E. A Simple Task time limit per test5 seconds memor ...

  8. Codeforces 629D Babaei and Birthday Cakes DP+线段树

    题目:http://codeforces.com/contest/629/problem/D 题意:有n个蛋糕要叠起来,能叠起来的条件是蛋糕的下标比前面的大并且体积也比前面的大,问能叠成的最大体积 思 ...

  9. Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

随机推荐

  1. 获取 Google USB 驱动程序

    获取 Google USB 驱动程序       另请参阅 安装 USB 驱动程序 使用硬件设备 使用任何 Google Nexus 设备进行 ADB 调试时,只有 Windows 需要 Google ...

  2. EF There is already an open DataReader associated with this Command

    捕捉到 System.InvalidOperationException _HResult=-2146233079 _message=意外的连接状态.在使用包装提供程序时,请确保在已包装的 DbCon ...

  3. Selenium基本使用(十三)测试中常见问题

    我们在使用selenium测试过程中,经常会遇到这样的问题: 1.frame或iframe <iframe id='frame1' name='frame1'> <input typ ...

  4. MongoDB 在 windows 下的安装与服务配置

    本文转载地址: https://blog.csdn.net/Dorma_Bin/article/details/80851230 本地安装及网页测试 在官网下载最新的安装文件 下载地址 : https ...

  5. shadow一键安装

    https://blog.csdn.net/qq_4278923/article/details/80909686

  6. vue框架(三)_vue引入jquery、bootstrap

    一.vue安装jquery 1.按照之前博客的内容,新建一个vue工程. 2.在项目文件夹下,使用命令npm install jquery --save-dev 引入jquery. 3.在build/ ...

  7. 导航,头部,CSS基础

    1.制作自己的导航条. 2.HTML头部元素: <base>  定义了页面链接标签的默认链接地址 <style>  定义了HTML文档的样式文件 <link>  定 ...

  8. 【Hive学习之四】Hive 案例

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  9. Spring tokenizeToStringArray

    tokenizeToStringArray: StringUtils.tokenizeToStringArray(pattern, this.pathSeparator, this.trimToken ...

  10. 在Hue中提交oozie定时任务

    可以参见下面这篇博文: 通过hue提交oozie定时任务