How TermFinder calculates P-values

Readme: MGI GO Term Finder

The GoTermFinder attempts to determine whether an observed level of annotation for a group of genes is significant within the context of annotation for all genes within the genome.  Suppose that we have a total population of N genes, in which M have a particular annotation.   If we observe x genes with that annotation, in a sample of n genes, then we can calculate the probability of that observation, using the hypergeometric distribution (eg, see http://mathworld.wolfram.com/HypergeometricDistribution.html ) as:

P-value is the probability or chance of seeing at least x number of genes out of the total n genes in the list annotated to a particular GO term, given the proportion of genes in the whole genome that are annotated to that GO Term. That is, the GO terms shared by the genes in the user's list are compared to the background distribution of annotation. The closer the p-value is to zero, the more significant the particular GO term associated with the group of genes is (i.e. the less likely the observed annotation of the particular GO term to a group of genes occurs by chance).

In other words, when searching the process ontology, if all of the genes in a group were associated with "DNA repair", this term would be significant. However, since all genes in the genome (with GO annotations) are indirectly associated with the top level term "biological_process", this would not be significant if all the genes in a group were associated with this very high level term.

Multiple comparisons problem

Gene Ontology analysis in multiple gene clusters under multiple hypothesis testing frameworks.

Hypergeometric distribution的更多相关文章

  1. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  2. 常见的概率分布类型(二)(Probability Distribution II)

    以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...

  3. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

  4. 《量化投资:以MATLAB为工具》连载(2)基础篇-N分钟学会MATLAB(中)

    http://www.matlabsky.com/thread-43937-1-1.html   <量化投资:以MATLAB为工具>连载(3)基础篇-N分钟学会MATLAB(下)     ...

  5. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  6. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Midterm

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  7. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 2 Random sampling with and without replacement

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  8. 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 2 Testing Statistical Hypotheses

    Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  9. R代码展示各种统计学分布 | 生物信息学举例

    二项分布 | Binomial distribution 泊松分布 | Poisson Distribution 正态分布 | Normal Distribution | Gaussian distr ...

随机推荐

  1. 如何在gvim中安装autoproto自动显示函数原型

    cankao: http://www.vim.org/scripts/script.php?script_id=1553 注意, 在gvim中执行的命令, :foo和:!foo 的区别, 跟vim一样 ...

  2. Java 实现一个自己的显式锁Lock(有超时功能)

    Lock接口 package concurency.chapter9; import java.util.Collection; public interface Lock { static clas ...

  3. Graph Convolutional Networks (GCNs) 简介

    Graph Convolutional Networks 2018-01-16  19:35:17 this Tutorial comes from YouTube Video:https://www ...

  4. Codeforces-Anastasia and pebbles

    这是一道很有意思的(水)题. 地址戳:http://codeforces.com/problemset/problem/789/A 题目的大意呢,就是一个可爱的大姐姐的故事.说是啊,她每天都带着两个一 ...

  5. spring applicationContext.xml

    <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...

  6. 解决win7的outlook打不开的问题

    outlook打不开,一直显示正在处理 解决方法: 1. 按住Ctrl,双击打开组件,会提示是否进入安全模式, 进入安全模式 2. 单击Outlook中的文件-选项-加载项- 左下角的“COM加载项“ ...

  7. Latex: extra alignment tab has been changed to cr

    参考: Error: extra alignment tab has been changed to \cr Latex: extra alignment tab has been changed t ...

  8. Leetcode66-Plus One-Eassy

    Given a non-empty array of digits representing a non-negative integer, plus one to the integer. The ...

  9. Oracle Single-Row Functions(单行函数)——NULL-Related Functions

    参考资料:http://docs.oracle.com/database/122/SQLRF/Functions.htm#SQLRF006 Single-row functions return a ...

  10. Centos7安装配置Apache+PHP+Mysql+phpmyadmin

    转载自: Centos7安装配置Apache+PHP+Mysql+phpmyadmin 一.安装Apache yum install httpd 安装成功后,Apache操作命令: systemctl ...