Flink - TypeInformation
Flink 自己创建一套独立的类型系统,
参考, https://ci.apache.org/projects/flink/flink-docs-release-0.10/internals/types_serialization.html
为何要自己搞一套,而不像其他的平台一样让编程语言或serialization framework来天然做掉?
Flink tries to know as much information about what types enter and leave user functions as possible. This stands in contrast to the approach to just assuming nothing and letting the programming language and serialization framework handle all types dynamically.
To allow using POJOs and grouping/joining them by referring to field names, Flink needs the type information to make checks (for typos and type compatibility) before the job is executed.
The more we know, the better serialization and data layout schemes the compiler/optimizer can develop. That is quite important for the memory usage paradigm in Flink (work on serialized data inside/outside the heap and make serialization very cheap).
For the upcoming logical programs (see roadmap draft) we need this to know the “schema” of functions.
Finally, it also spares users having to worry about serialization frameworks and having to register types at those frameworks.
Note. POJOs是什么?Plain Old Java Object(简单的Java对象),即轻量java对象的花式叫法
主要的理由,
第一是要做类型检查,Flink支持比较灵活的基于field的join或group,需要先检查这个field是否可以作为key,或这个field是否可以做join或group
第二是性能优化,便于使用更好的序列化和数据的layout
Flink主要定义如下几种类型,
Internally, Flink makes the following distinctions between types:
Basic types: All Java primitives and their boxed form, plus
void,String, andDate.Primitive arrays and Object arrays
Composite types
Flink Java Tuples (part of the Flink Java API)
Scala case classes (including Scala tuples)
POJOs: classes that follow a certain bean-like pattern
Scala auxiliary types (Option, Either, Lists, Maps, …)
Generic types: These will not be serialized by Flink itself, but by Kryo.
基本类型
数组(包含Primitive数组和对象数组)
组合类型,包含Flink Tuples, Scala case classes, 和POJOS
Scala增加的辅助类型
泛型,这个Flink不处理,而是用kryo
这里尤其需要注意POJOs,因为它的field是可以直接用name引用的,非常方便
dataSet.join(another).where("name").equalTo("personName")
那么对于Flink的准确的POJO的定义是什么?
- The class is public and standalone (no non-static inner class)
- The class has a public no-argument constructor
- All fields in the class (and all superclasses) are either public or or have a public getter and a setter method that follows the Java beans naming conventions for getters and setters.
很简单,只要满足上面的规范,就支持“by-name” field referencing
文档里面还描述了在Scala和Java API中的类型问题,
对于Scala,用manifest或typetag来解决了泛型擦除的问题,所以主要是Flink用macro实现了TypeInformation,便于使用
对于Java,就必须要解决泛型擦除的问题,
DataSet<SomeType> result = dataSet
.map(new MyGenericNonInferrableFunction<Long, SomeType>())
.returns(SomeType.class);
比如,上面的日志,如果不加最后的hints,在runtime其实是无法知道SomeType是什么的,在编译的时候已经被erase成Object
所以Flink使用returns原语来增加hints
来看看源码,
基类为,
package org.apache.flink.api.common.typeinfo;
TypeInformation
目的, This type information class acts as the tool
to generate serializers and comparators
to perform semantic checks such as whether the fields that are uses as join/grouping keys actually exist.
bridges between the programming languages object model and a logical flat schema
前两个目的好理解,
最后一个目的,搞清两个概念,
arity,the number of fields it contains directly
total number of fields,number of fields in the entire schema of this type, including nested types
举个例子,
* public class InnerType {
* public int id;
* public String text;
* }
*
* public class OuterType {
* public long timestamp;
* public InnerType nestedType;
* }
对于Inner type,arity和fields都是2
但对于OuterType,虽然arity是2,但fields是3,因为要把嵌套类型的fields也算上,这就是把编程语言对象模型转换为flat的逻辑schema
如何算fields的规则如下:
* <li>Basic types are indivisible and are considered a single field.</li>
* <li>Arrays and collections are one field</li>
* <li>Tuples and case classes represent as many fields as the class has fields</li>
IntegerTypeInfo
用这个作为例子,分析一下
public class IntegerTypeInfo<T> extends NumericTypeInfo<T>
public abstract class NumericTypeInfo<T> extends BasicTypeInfo<T>
public class BasicTypeInfo<T> extends TypeInformation<T> implements AtomicType<T>
可以看到Integer最终继承到BasicType,BasicType除了继承TypeInformation还实现AtomicType接口,
public interface AtomicType<T> {
TypeComparator<T> createComparator(boolean sortOrderAscending, ExecutionConfig executionConfig);
}
* An atomic type is a type that is treated as one indivisible unit and where the entire type acts
* as a key.
* In contrast to atomic types are composite types, where the type information is aware of the individual
* fields and individual fields may be used as a key.
atomic类型就是不可分的类型,不像composite类型还包含其他的field,所以atomic本身整个作为key,基本类型如int肯定是属于atomic类型的
在BasicTypeInfo中定义了所有基本类型的TypeInfo,
public static final BasicTypeInfo<String> STRING_TYPE_INFO = new BasicTypeInfo<String>(String.class, new Class<?>[]{}, StringSerializer.INSTANCE, StringComparator.class);
public static final BasicTypeInfo<Boolean> BOOLEAN_TYPE_INFO = new BasicTypeInfo<Boolean>(Boolean.class, new Class<?>[]{}, BooleanSerializer.INSTANCE, BooleanComparator.class);
public static final BasicTypeInfo<Byte> BYTE_TYPE_INFO = new IntegerTypeInfo<Byte>(Byte.class, new Class<?>[]{Short.class, Integer.class, Long.class, Float.class, Double.class, Character.class}, ByteSerializer.INSTANCE, ByteComparator.class);
public static final BasicTypeInfo<Short> SHORT_TYPE_INFO = new IntegerTypeInfo<Short>(Short.class, new Class<?>[]{Integer.class, Long.class, Float.class, Double.class, Character.class}, ShortSerializer.INSTANCE, ShortComparator.class);
public static final BasicTypeInfo<Integer> INT_TYPE_INFO = new IntegerTypeInfo<Integer>(Integer.class, new Class<?>[]{Long.class, Float.class, Double.class, Character.class}, IntSerializer.INSTANCE, IntComparator.class);
public static final BasicTypeInfo<Long> LONG_TYPE_INFO = new IntegerTypeInfo<Long>(Long.class, new Class<?>[]{Float.class, Double.class, Character.class}, LongSerializer.INSTANCE, LongComparator.class);
public static final BasicTypeInfo<Float> FLOAT_TYPE_INFO = new FractionalTypeInfo<Float>(Float.class, new Class<?>[]{Double.class}, FloatSerializer.INSTANCE, FloatComparator.class);
public static final BasicTypeInfo<Double> DOUBLE_TYPE_INFO = new FractionalTypeInfo<Double>(Double.class, new Class<?>[]{}, DoubleSerializer.INSTANCE, DoubleComparator.class);
public static final BasicTypeInfo<Character> CHAR_TYPE_INFO = new BasicTypeInfo<Character>(Character.class, new Class<?>[]{}, CharSerializer.INSTANCE, CharComparator.class);
public static final BasicTypeInfo<Date> DATE_TYPE_INFO = new BasicTypeInfo<Date>(Date.class, new Class<?>[]{}, DateSerializer.INSTANCE, DateComparator.class);
public static final BasicTypeInfo<Void> VOID_TYPE_INFO = new BasicTypeInfo<Void>(Void.class, new Class<?>[]{}, VoidSerializer.INSTANCE, null);
可以看到Byte,short,int,long都用的是IntegerTypeInfo
创建的4个参数分别为,以INT_TYPE_INFO为例,
class对象,Integer.class
可能被cast成的类型,所以对于Integer,被cast成long,float,double,character都是可以的
Serializer对象
Comparator对象
可以看到flink重新封装了所有对象的Serializer和Comparator
我们看下LongSerializer,
@Override
public void serialize(Long record, DataOutputView target) throws IOException {
target.writeLong(record.longValue());
}
很高效的,对于Long,只会序列化真正的longValue,而不会存多余的东西
而NumericTypeInfo,只是一种特殊的BasicTypeInfo
private static final Set<Class<?>> numericalTypes = Sets.<Class<?>>newHashSet(
Integer.class,
Long.class,
Double.class,
Byte.class,
Short.class,
Float.class,
Character.class
);
只有上面这几种class对象,才被认为是NumericTypeInfo
而IntegerTypeInfo,只是范围的进一步缩小,
private static final Set<Class<?>> integerTypes = Sets.<Class<?>>newHashSet(
Integer.class,
Long.class,
Byte.class,
Short.class,
Character.class
);
除了上面的AtomicType,还有如array的typeinfo
比如,BasicArrayTypeInfo
Flink - TypeInformation的更多相关文章
- Kafka设计解析(二十)Apache Flink Kafka consumer
转载自 huxihx,原文链接 Apache Flink Kafka consumer Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flin ...
- 【译】Apache Flink Kafka consumer
Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义. ...
- 【翻译】Flink Table Api & SQL —— 数据类型
本文翻译自官网:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/types.html Flink Table ...
- Apache Flink 1.9重磅发布!首次合并阿里内部版本Blink重要功能
8月22日,Apache Flink 1.9.0 版本正式发布,这也是阿里内部版本 Blink 合并入 Flink 后的首次版本发布.此次版本更新带来的重大功能包括批处理作业的批式恢复,以及 Tabl ...
- Flink 案例整合
1.概述 Flink 1.1.0 版本已经在官方发布了,官方博客于 2016-08-08 更新了 Flink 1.1.0 的变动.在这 Flink 版本的发布,添加了 SQL 语法这一特性.这对于业务 ...
- Flink - DataStream
先看例子, final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); D ...
- Flink - Working with State
All transformations in Flink may look like functions (in the functional processing terminology), but ...
- Flink - Juggling with Bits and Bytes
http://www.36dsj.com/archives/33650 http://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-B ...
- Flink Program Guide (8) -- Working with State :Fault Tolerance(DataStream API编程指导 -- For Java)
Working with State 本文翻译自Streaming Guide/ Fault Tolerance / Working with State ---------------------- ...
随机推荐
- python 中的i++ ,逻辑表达式
1.关于i++ python 中的没有 i++ ,如果写了会报语法错误. 但是python 中有 --i,++i,+-i,-+i,他们不是实现-1操作的,仅仅是作为判断运算符号,类似数学中的负负得正 ...
- 【iCore1S 双核心板_FPGA】例程十:乘法器实验——乘法器的使用
实验现象: 通过FPGA 的一个I/O 口连接LED:设定I/O 为输出模式.内部乘法器完成乘法计算后改变输出LED 的状态(红色LED 闪烁). 核心代码: module MULT( input C ...
- 【Unity】序列化字典Dictionary的问题
问题:在C#脚本定义了public Dictionary字典,然而在编辑器检视面板Editor Inspector中看不到(即无法序列化字典).即不能在编辑器中拖拽给字典赋值. 目标:检视面板Insp ...
- 创建shell脚本
1.写一个脚本 a) 用touch命令创建一个文件:touch my_script b) 用vim编辑器打开my_script文件:vi my_script c) 用vim编辑器编辑my_script ...
- Maven手动安装jar包到仓库
mvn install:install-file -Dfile=C:\Users\Administrator\Desktop\IKAnalyzer6.5.0.jar -DgroupId=com.luc ...
- c# 调用非托管c++dll 参数问题(转)
在C#中调用C(C++)类的DLL的时候,有时候C的接口函数包含很多参数,而且有的时候这些参数有可能是个结构体,而且有可能是结构体指针,那么在C#到底该如何安全的调用这样的DLL接口函数呢?本文将详细 ...
- Sphinx 2.2.11-release reference manual
1. Introduction 1.1. About 1.2. Sphinx features 1.3. Where to get Sphinx 1.4. License 1.5. Credits 1 ...
- H3C S5120清除console口密码
1.开机启动交换机显示Press Ctrl-B to enter Extended Boot menu...0 字样迅速按Ctrl-B进入如下字符介面提示: Press Ctrl-B to ente ...
- CentOS6上实现Tomcat8 service启动,并查看status
service配置脚本,“/etc/init.d/tomcat”,实现通过"service tomcat status " 查看tomcat状态,并输出PID,见脚本 # desc ...
- [Object Tracking] How to learn Active contour model - Snake Model
常见四种跟踪的思路: 区域:人体肢体识别.跟踪 模型:人体面部识别.跟踪 特征:摄像头3D定位 主动轮廓:(蛇模型属于这er,数学基础<图像处理的偏微分方程方法>,也是最流行的一个目前) ...