Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.
  
题意:给定一个区间,找去这个区间里相邻的最近的和最远的两组素数。
思路:根据题目中的数据范围,可以看出要用到埃式筛法,直接暴力肯定是不行的,然后直接无脑写就行了,好吧这就是我调了两天才AC的原因,我用的是挑战程序设计竞赛的模板。。。。。。阿西吧。
一直过不了,不废话了,具体看代码中的注释吧。
  1 #include <map>
2 #include <set>
3 #include <list>
4 #include <stack>
5 #include <queue>
6 #include <deque>
7 #include <cmath>
8 #include <ctime>
9 #include <string>
10 #include <limits>
11 #include <cstdio>
12 #include <vector>
13 #include <iomanip>
14 #include <cstdlib>
15 #include <cstring>
16 #include <istream>
17 #include <iostream>
18 #include <algorithm>
19 #define ci cin
20 #define co cout
21 #define el endl
22 #define Scc(c) scanf("%c",&c)
23 #define Scs(s) scanf("%s",s)
24 #define Sci(x) scanf("%d",&x)
25 #define Sci2(x, y) scanf("%d%d",&x,&y)
26 #define Sci3(x, y, z) scanf("%d%d%d",&x,&y,&z)
27 #define Scl(x) scanf("%I64d",&x)
28 #define Scl2(x, y) scanf("%I64d%I64d",&x,&y)
29 #define Scl3(x, y, z) scanf("%I64d%I64d%I64d",&x,&y,&z)
30 #define Pri(x) printf("%d\n",x)
31 #define Prl(x) printf("%I64d\n",x)
32 #define Prc(c) printf("%c\n",c)
33 #define Prs(s) printf("%s\n",s)
34 #define For(i,x,y) for(int i=x;i<y;i++)
35 #define For_(i,x,y) for(int i=x;i<=y;i++)
36 #define FFor(i,x,y) for(int i=x;i>y;i--)
37 #define FFor_(i,x,y) for(int i=x;i>=y;i--)
38 #define Mem(f, x) memset(f,x,sizeof(f))
39 #define LL long long
40 #define ULL unsigned long long
41 #define MAXSIZE 1000005
42 #define INF 0x3f3f3f3f
43
44 const int mod=1e9+7;
45 const double PI = acos(-1.0);
46
47 using namespace std;
48
49 bool is_prime[MAXSIZE];
50 bool is_prime_small[MAXSIZE];
51 //is_prime[i-a]=true--->i是素数
52 void solve(LL a,LL b)
53 {
54 for(int i=0; (LL)i*i<=b; i++)
55 is_prime_small[i]=true;
56 //is_prime_small[0]=is_prime_small[1]=false;
57 for(int i=0; i<=b-a; i++)
58 is_prime[i]=true;
59 if(a==1)
60 is_prime[0]=0;//就是这个特判,我调了一天才搞出来 。。。。。。
61 for(int i=2; (LL)i*i<=b; i++)
62 if(is_prime_small[i])
63 {
64 for(int j=2*i; (LL)j*j<=b; j+=i)
65 is_prime_small[j]=false;//筛2~根号b
66 for(LL j=max(2LL,(a+i-1)/i)*i; j<=b; j+=i)
67 is_prime[j-a]=false;//筛a~b
68 }
69 }
70 //j = (ll)(a-1+i)/i*i
71 //(a-1+i)/i*i是对a/i向上取整,此计算的作用是求得第一个>=a的i的倍数。
72 //for(LL j=max(2LL,(a+i-1)/i)*i; j<=b; j+=i)这个循环的初始条件还是不懂
73
74 int main()
75 {
76 LL a,b;
77 LL c1,c2,d1,d2;
78 while(~Scl2(a,b))
79 {
80 solve(a,b);
81 int tmp=-1;
82 int minn=INF,maxx=-1;
83 queue<int>q1,q2;
84 For_(i,a,b)
85 {
86 if(is_prime[i-a])
87 {
88 if(tmp!=-1)
89 {
90 if(i-tmp<minn)
91 {
92 minn=i-tmp;
93 c1=tmp;
94 c2=i;
95 }
96 if(i-tmp>maxx)
97 {
98 maxx=i-tmp;
99 d1=tmp;
100 d2=i;
101 }
102 }
103 tmp=i;
104 }
105 }
106 if(minn!=INF||maxx!=-1)
107 cout<<c1<<","<<c2<<" are closest, "<<d1<<","<<d2<<" are most distant."<<endl;
108 else
109 Prs("There are no adjacent primes.");
110 }
111 return 0;
112 }

Prime Distance的更多相关文章

  1. 数论 - 素数的运用 --- poj 2689 : Prime Distance

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12512   Accepted: 3340 D ...

  2. UVA 10140 - Prime Distance(数论)

    10140 - Prime Distance 题目链接 题意:求[l,r]区间内近期和最远的素数对. 思路:素数打表,打到sqrt(Max)就可以,然后利用大的表去筛素数.因为[l, r]最多100W ...

  3. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  4. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

  5. 一本通1619【例 1】Prime Distance

    1619: [例 1]Prime Distance 题目描述 原题来自:Waterloo local,题面详见 POJ 2689 给定两个整数 L,R,求闭区间 [L,R] 中相邻两个质数差值最小的数 ...

  6. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  7. POJ-2689 Prime Distance (两重筛素数,区间平移)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13961   Accepted: 3725 D ...

  8. UVA10140 Prime Distance

    UVA10140 Prime Distance 给定两个整数L,R(1<=L<=R<=2^{31},R-L<=10^6)L,R(1<=L<=R<=231,R− ...

  9. ZOJ 1842 Prime Distance(素数筛选法2次使用)

    Prime Distance Time Limit: 2 Seconds      Memory Limit: 65536 KB The branch of mathematics called nu ...

  10. 解题报告:poj2689 Prime Distance

    2017-10-03 11:29:20 writer:pprp 来源:kuangbin模板 从已经筛选好的素数中筛选出规定区间的素数 /* *prime DIstance *给出一个区间[L,U],找 ...

随机推荐

  1. oracle第二步创建表空间、用户、授权

    Windows+r→键入sqlplus,输入已安装好的oracle数据库超级管理员账号密码登录.显示: 成功. 创建表空间: 创建用户并默认表空间: 授权该创建用户对数据库的操作: 代码: SQL&g ...

  2. Linux 系统环境监测

    Linux系统环境监测 Linux系统环境主要监测CPU.内存.磁盘I/O和网络流量. 1. CPU (1) 查看CPU的负载情况:uptime 可以通过uptime查看系统整体的负载情况. 如果服务 ...

  3. Spring04:JdbcTemplate及事务控制(AOP、XML、注解)

    今日内容 Spring中的JdbcTemplate 作业:Spring基于AOP的事务控制 Spring中的事务控制 基于XML的 基于注解的 一.JdbcTemplate 1.JdbcTemplat ...

  4. live-player live-pusher惨案

    昨天遇到的问题,旧项目: 一个页面同时使用live-player和live-pusher时候遇到的问题,live-pusher正常,live-player无效,没有任何报错 打log 所有livepl ...

  5. JVM常用调优参数

    目录 JVM内存模型及常用参数 参数解释 垃圾收集器 Serial收集器(-XX:+UseSerialGC -XX:+UseSerialOldGC) Parallel Scavenge收集器(-XX: ...

  6. MongoDB - 模式设计

    注意事项 模式设计,即在文档中表示数据的方式,对于数据表示来说时非常关键的. 为 MongoDB 做模式设计时,在性能.可伸缩性和简单性方面是重中之重,也需要考虑一些特别的注意事项. 限制条件 与常见 ...

  7. 常用 Git 命令行操作

    本文记录了一些常用 Git 命令行操作的具体使用方式 git clone git clone REPOSITORY_URL 拉取仓库,并使用仓库名作为本地文件名 git clone REPOSITOR ...

  8. 深入探究Java中的对象类型变量声明操作——在声明对象时,系统究竟做了什么?

    深入探究Java中的对象类型变量声明操作--在声明对象时,系统究竟做了什么? 摘要:本文主要对Java中的对象类型变量的声明的底层原理做了探究. 目录 深入探究Java中的对象类型变量声明操作--在声 ...

  9. ArcGIS工具 - 计算折点数量

    在GIS中,点构成线,线构成面,面构成体,维度增加,模型也加复杂.有时,我们需要统计线面等要素到底由多少个点构成,系统工具没有此功能,为源地理提供了三种解决方案. 方法一 折点转点 使用要素折点转点工 ...

  10. 记一次CVE实战挖掘记录

    CVE实战挖掘记录 前一段时间在学习代码审计,然后为了学习就开始在github上面找开源的项目进行练手学习代码审计,这样就可以获取CVE编号. 0x01 cve编号获取流程 首先登录CVE官方网站,选 ...