Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.
  
题意:给定一个区间,找去这个区间里相邻的最近的和最远的两组素数。
思路:根据题目中的数据范围,可以看出要用到埃式筛法,直接暴力肯定是不行的,然后直接无脑写就行了,好吧这就是我调了两天才AC的原因,我用的是挑战程序设计竞赛的模板。。。。。。阿西吧。
一直过不了,不废话了,具体看代码中的注释吧。
  1 #include <map>
2 #include <set>
3 #include <list>
4 #include <stack>
5 #include <queue>
6 #include <deque>
7 #include <cmath>
8 #include <ctime>
9 #include <string>
10 #include <limits>
11 #include <cstdio>
12 #include <vector>
13 #include <iomanip>
14 #include <cstdlib>
15 #include <cstring>
16 #include <istream>
17 #include <iostream>
18 #include <algorithm>
19 #define ci cin
20 #define co cout
21 #define el endl
22 #define Scc(c) scanf("%c",&c)
23 #define Scs(s) scanf("%s",s)
24 #define Sci(x) scanf("%d",&x)
25 #define Sci2(x, y) scanf("%d%d",&x,&y)
26 #define Sci3(x, y, z) scanf("%d%d%d",&x,&y,&z)
27 #define Scl(x) scanf("%I64d",&x)
28 #define Scl2(x, y) scanf("%I64d%I64d",&x,&y)
29 #define Scl3(x, y, z) scanf("%I64d%I64d%I64d",&x,&y,&z)
30 #define Pri(x) printf("%d\n",x)
31 #define Prl(x) printf("%I64d\n",x)
32 #define Prc(c) printf("%c\n",c)
33 #define Prs(s) printf("%s\n",s)
34 #define For(i,x,y) for(int i=x;i<y;i++)
35 #define For_(i,x,y) for(int i=x;i<=y;i++)
36 #define FFor(i,x,y) for(int i=x;i>y;i--)
37 #define FFor_(i,x,y) for(int i=x;i>=y;i--)
38 #define Mem(f, x) memset(f,x,sizeof(f))
39 #define LL long long
40 #define ULL unsigned long long
41 #define MAXSIZE 1000005
42 #define INF 0x3f3f3f3f
43
44 const int mod=1e9+7;
45 const double PI = acos(-1.0);
46
47 using namespace std;
48
49 bool is_prime[MAXSIZE];
50 bool is_prime_small[MAXSIZE];
51 //is_prime[i-a]=true--->i是素数
52 void solve(LL a,LL b)
53 {
54 for(int i=0; (LL)i*i<=b; i++)
55 is_prime_small[i]=true;
56 //is_prime_small[0]=is_prime_small[1]=false;
57 for(int i=0; i<=b-a; i++)
58 is_prime[i]=true;
59 if(a==1)
60 is_prime[0]=0;//就是这个特判,我调了一天才搞出来 。。。。。。
61 for(int i=2; (LL)i*i<=b; i++)
62 if(is_prime_small[i])
63 {
64 for(int j=2*i; (LL)j*j<=b; j+=i)
65 is_prime_small[j]=false;//筛2~根号b
66 for(LL j=max(2LL,(a+i-1)/i)*i; j<=b; j+=i)
67 is_prime[j-a]=false;//筛a~b
68 }
69 }
70 //j = (ll)(a-1+i)/i*i
71 //(a-1+i)/i*i是对a/i向上取整,此计算的作用是求得第一个>=a的i的倍数。
72 //for(LL j=max(2LL,(a+i-1)/i)*i; j<=b; j+=i)这个循环的初始条件还是不懂
73
74 int main()
75 {
76 LL a,b;
77 LL c1,c2,d1,d2;
78 while(~Scl2(a,b))
79 {
80 solve(a,b);
81 int tmp=-1;
82 int minn=INF,maxx=-1;
83 queue<int>q1,q2;
84 For_(i,a,b)
85 {
86 if(is_prime[i-a])
87 {
88 if(tmp!=-1)
89 {
90 if(i-tmp<minn)
91 {
92 minn=i-tmp;
93 c1=tmp;
94 c2=i;
95 }
96 if(i-tmp>maxx)
97 {
98 maxx=i-tmp;
99 d1=tmp;
100 d2=i;
101 }
102 }
103 tmp=i;
104 }
105 }
106 if(minn!=INF||maxx!=-1)
107 cout<<c1<<","<<c2<<" are closest, "<<d1<<","<<d2<<" are most distant."<<endl;
108 else
109 Prs("There are no adjacent primes.");
110 }
111 return 0;
112 }

Prime Distance的更多相关文章

  1. 数论 - 素数的运用 --- poj 2689 : Prime Distance

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12512   Accepted: 3340 D ...

  2. UVA 10140 - Prime Distance(数论)

    10140 - Prime Distance 题目链接 题意:求[l,r]区间内近期和最远的素数对. 思路:素数打表,打到sqrt(Max)就可以,然后利用大的表去筛素数.因为[l, r]最多100W ...

  3. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  4. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

  5. 一本通1619【例 1】Prime Distance

    1619: [例 1]Prime Distance 题目描述 原题来自:Waterloo local,题面详见 POJ 2689 给定两个整数 L,R,求闭区间 [L,R] 中相邻两个质数差值最小的数 ...

  6. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  7. POJ-2689 Prime Distance (两重筛素数,区间平移)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13961   Accepted: 3725 D ...

  8. UVA10140 Prime Distance

    UVA10140 Prime Distance 给定两个整数L,R(1<=L<=R<=2^{31},R-L<=10^6)L,R(1<=L<=R<=231,R− ...

  9. ZOJ 1842 Prime Distance(素数筛选法2次使用)

    Prime Distance Time Limit: 2 Seconds      Memory Limit: 65536 KB The branch of mathematics called nu ...

  10. 解题报告:poj2689 Prime Distance

    2017-10-03 11:29:20 writer:pprp 来源:kuangbin模板 从已经筛选好的素数中筛选出规定区间的素数 /* *prime DIstance *给出一个区间[L,U],找 ...

随机推荐

  1. 第一章:seaborn图形美学

    一.seaborn模板 1 import numpy as np 2 import matplotlib.pyplot as plt 3 4 def sinplot(flip=1): 5 x = np ...

  2. day30-JQuery03

    JQuery03 4.jQuery选择器03 4.4表单选择器 应用实例 <!DOCTYPE html> <html lang="en"> <head ...

  3. 【PostgreSQL/PGSQL】创建分区表与临时表

    一.分区表 1.链接 https://blog.csdn.net/zhangyupeng0528/article/details/119423234 2.分类 列(值)分区表:partition by ...

  4. 一个小时,200行代码,手写Spring的IOC、DI、MVC

    一.概述 配置阶段:主要是完成application.xml配置和Annotation配置. 初始化阶段:主要是加载并解析配置信息,然后,初始化IOC容器,完成容器的DI操作,已经完成HandlerM ...

  5. mac连接mysql出现Access denied for user ‘root‘@‘localhost‘

    处理方法:1.关闭mysql的服务,点击最左上的苹果图标在系统偏好设置中,找到mysql,点击,stop 确认关闭后进入终端 输入(cd /usr/local/mysql/bin/)回车 输入(sud ...

  6. STM32按键控制LED亮灭的代码

    led.c #include "led.h" void LED_Config(void) { GPIO_InitTypeDef GPIO_InitStruct; RCC_APB2P ...

  7. JavaScript:操作符:算术运算符(加减乘除模幂)及其隐式转换数据类型

    加法+ 减法- 乘法* 除法/ 模运算% 幂运算**,即a ** b求的是a的b次方 执行上述运算时,当两个操作数有非数字时,JS会隐式转换为数字,再进行运算: 一些特殊的非数字,会进行如下转换: t ...

  8. [OpenCV实战]4 OpenCV中的颜色空间

    目录 1 不同的色彩空间 1.1RGB颜色空间 1.2 Lab色彩空间 1.3  YCrCb颜色空间 1.4 HSV颜色空间 2 如何使用这些颜色空间进行分割 2.1 获取特定颜色的颜色值 2.2 应 ...

  9. Python Excel 追加数据

    xlutils 库的安装 你好,我是悦创. 前面我分享了 Excel 的读写:Python 实现 Excel 的读写操作:https://bornforthis.cn/column/pyauto/au ...

  10. 深入探究Java中的对象类型变量声明操作——在声明对象时,系统究竟做了什么?

    深入探究Java中的对象类型变量声明操作--在声明对象时,系统究竟做了什么? 摘要:本文主要对Java中的对象类型变量的声明的底层原理做了探究. 目录 深入探究Java中的对象类型变量声明操作--在声 ...