题解 [AHOI2009]同类分布
不理解之前为什么不会哈哈哈哈哈哈哈哈。
我是个天才(喜
显然记录 \(f_{i, t, r, s, limit, lead}\),\(i, limit, lead\) 是数位 dp 的套路,\(t\) 代表被除数,就是原数,\(r\) 代表余数,\(s\) 代表除数。
我们会发现 \(s\) 直接转移非常难做,而且它很小,最多才 \(9 \times 18 = 162\),直接枚举。
然后我们会发现 \(t\) 非常大怎么办 \(t\) 不重要就是 \(t\) 的各个数位和重要,数位和顶多 162,我们将 \(t\) 改为各个数位和即可。
然后我们就可以把 \(s\) 这一维删掉。
转移显而易见。
开 longlong+O2 即可
//SIXIANG
#include <iostream>
#include <cstring>
#define MAXN 10000
#define ll long long
#define QWQ cout << "QWQ" << endl;
using namespace std;
ll f[20][200][200][2][2];
int tot = 0, arr[MAXN + 10];
int pika(int i, int t, int r, bool limit, bool lead, int qaq) {
if(!i) {
if(!r && t == qaq) return 1;
else return 0;
}
if(f[i][t][r][limit][lead] != -1) return f[i][t][r][limit][lead];
ll rest = 0;
int lim = ((limit) ? (arr[i]) : 9);
for(int p = 0; p <= lim; p++)
rest = (rest + pika(i - 1, t + p, (10 * r + p) % qaq, limit && (p == arr[i]), lead && (!p), qaq));
f[i][t][r][limit][lead] = rest;
return rest;
}
ll solve(int x) {
memset(arr, 0, sizeof(arr));
tot = 0;
do {
arr[++tot] = x % 10;
x /= 10;
} while(x);
ll sum = 0;
for(int p = 1; p <= 9 * tot; p++) {
memset(f, -1, sizeof(f));
sum += pika(tot, 0, 0, 1, 1, p);
}
return sum;
}
signed main() {
int l, r;
cin >> l >> r;
cout << solve(r) - solve(l - 1) << endl;
}
题解 [AHOI2009]同类分布的更多相关文章
- 【BZOJ1799】[AHOI2009]同类分布(动态规划)
[BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...
- P4127 [AHOI2009]同类分布
P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下 yuan%sum==0 不就好啦??? ...
- 洛谷 P4127 [AHOI2009]同类分布 解题报告
P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...
- [BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 1635 Solved: 728[Submit][S ...
- 【题解】AHOI2009同类分布
好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ" 实际上这题只要顺藤摸瓜就可以了.首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数:2. ...
- 【[AHOI2009]同类分布】
这是一篇有些赖皮的题解 (如果不赖皮的话,bzoj上也是能卡过去的) 首先由于我这个非常\(sb\)的方法复杂度高达\(O(171^4)\),所以面对极限的\(1e18\)的数据实在是卡死了 但是这个 ...
- 洛谷 P4127 [AHOI2009]同类分布
题意简述 求l~r之间各位数字之和能整除原数的数的个数. 题解思路 数位DP 代码 #include <cstdio> #include <cstring> typedef l ...
- [AHOI2009]同类分布
题目大意: 问在区间[l,r]内的正整数中,有多少数能被其个位数字之和整除. 思路: 数位DP. 极端情况下,每一位都是9,所以各位数字之和不超过9*18.(为了方便这里用了9*19) f[i][j] ...
- [luogu4127 AHOI2009] 同类分布 (数位dp)
传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...
- 【数位DP】【P4127】[AHOI2009]同类分布
Description 给出两个数 \(a,~b\) 求出 \([a~,b]\) 中各位数字之和能整除原数的数的个数. Limitations \(1 \leq a,~b \leq 10^{18}\) ...
随机推荐
- CompletionService 使用小结
本文为博主原创,转载请注明出处: 实现异步任务时,经常使用 FutureTask 来实现:一个简单的示例代码如下: public static void main(String[] args) thr ...
- 【SQL基础】【记住重命名】高级查询:聚合函数(四舍五入)、分组过滤、排序、
〇.概述 1.功能概述 高级查询:聚合函数(四舍五入).分组过滤.排序. 2.建表语句 drop table if exists user_profile; CREATE TABLE `user_pr ...
- 【Java SE】Day05数组
一.数组的定义和访问 1.初始化 动态new int[10];--默认值 静态new int[]{1,2,3};,省略为{1,2,3}; 2.访问 长度arr.length属性(数组的属性) 打印数组 ...
- FP6397S5 高效、高频同步DC-DC降压变频器IC
FP6397是一种高效.高频同步DC-DC降压变频器.100%占空比功能提供了低退出操作,延长了便携式系统的电池寿命. 内部同步开关提高了效率,并消除了对外部肖特基二极管的需要.在停机模式下,输入电源 ...
- 盘点JAVA中基于CAS实现的原子类, 你知道哪些?
前言 JDK中提供了一系列的基于CAS实现的原子类,CAS 的全称是Compare-And-Swap,底层是lock cmpxchg指令,可以在单核和多核 CPU 下都能够保证比较交换的原子性.所以说 ...
- 【py模板】missingno画缺失直观图,matplotlib和sns画箱线图
import missingno as msn import pandas as pd train = pd.read_csv('cupHaveHead1.csv') msn.matrix(train ...
- C#深拷贝方法
概述 为什么要用到深拷贝呢?比如我们建了某个类Person,并且实例化出一个对象,然后,突然需要把这个对象复制一遍,并且复制出来的对象要跟之前的一模一样,来看下我们一般会怎么做. 方法一(利用反射实现 ...
- Django框架三板斧本质-jsonResponse对象-form表单上传文件request对象方法-FBV与CBV区别
目录 一:视图层 2.三板斧(HttpResponse对象) 4.HttpResponse() 5.render() 6.redirect() 7.也可以是一个完整的URL 二:三板斧本质 1.Dja ...
- 零基础入门 Java 后端开发,有哪些值得看的视频?
目前网络上充满了大量的 Java 视频教程,然而内容却鱼龙混杂,为了防止小伙伴们踩坑,一枫结合自己的学习经验,向大家推荐一些不错的学习资源. 作为一名非科班转码选手,可以说,我是在哔哩哔哩上的研究生! ...
- week_5
Andrew Ng机器学习笔记---by Orangestar Week_5 重点:反向传播算法,backpropagation 1. Cost Function神经元的代价函数 回顾定义:(上节回顾 ...