NC20012 [HEOI2014]南园满地堆轻絮
NC20012 [HEOI2014]南园满地堆轻絮
题目
题目描述
小 Z 是 ZRP(Zombies’ Republic of Poetry,僵尸诗歌共和国)的一名诗歌爱好者,最近他研究起了诗词音律的问题。
在过去,诗词是需要编成曲子唱出来的,比如下面这首《菩萨蛮》,唱出来的话其对应的音符就是这样的:
南 园 满 地 堆 轻 絮, 愁 闻 一 霎 清 明 雨
1 1 5 5 6 6 5 4 4 3 3 2 2 1
因而可以发现,“1 1 5 5 6 6 5 4 4 3 3 2 2 1”这串音符就成为了研究音律的关键。
小Z翻阅了众多史料发现,过去的一首曲子的音调是不下降的
小Z想要知道对于一首给定的曲子,如何通过提高音调或者降低音调,将它的音调修改的不下降,而且使得修改幅度最大的那个音符的修改幅度尽量小。
即如果把一个包含 n 个音 符的曲子看做是一个正整数数列 A[1]…A[n],那么 目标是求另一个正整数数列 B[1]…B[n], 使得对于任意的 1 ≤ i < n 有 B[i] ≤ B[i+1],而且使得 Ans = Max{|A[j]-B[j]|,1 ≤ j ≤ n}尽量小。
小 Z 很快就想清楚了做法,但是鉴于他还忙着写诗,所以这个任务就交给了你。
输入描述
由于数据规模可能较大,因此采用如下方式生成数据。
每个数据包含6个数:n,Sa,Sb,Sc,Sd,A[1],Mod,意为共有 n 个音符,第一个音符为 A[1]
生成规则如下:
定义生成函数F(x) = Sa*x^3 + Sb*x^2 + Sc*x + Sd; 那么给出递推公式A[i] = F(A[i-1]) + F(A[i-2]),此处规定A[0]=0.
由于中间过程的数可能会特别大,所以要求每一步与A中的每个数都对一个给定的数 Mod 取模。
输出描述
输出一行,包含一个正整数 Ans。
示例1
输入
3 815 6901 3839 178 199 10007
输出
1334
备注
对于 \(10\%\) 的数据, \(n \le 3\)
对于 \(20\%\) 的数据, \(n \le 10\)
对于 \(30\%\) 的数据, \(n \le 100\)
对于 \(50\%\) 的数据, \(n \le 1000\)
对于 \(70\%\) 的数据, \(n \le 100000\)
对于 \(100\%\) 的数据, \(n \le 5000000,S_a,S_b,S_c,S_d,A[1] \le 10000,Mod \le 1000000007\)
题解
思路
知识点:二分。
很显然二分答案,二分一个阈值范围。
注意到需要不减,那么前一个点高度越低越好,给后面的点留足高度。
那么第一个节点直接到最低 \(A[1] - mid\),后面第 \(i\) 个节点如果 \(A[i] < A[i-1]\) ,则把 \(A[i]\) 提升到与 \(A[i-1]\) 相等为了最低限度满足条件 ,如果最后还是 \(A[i] + mid < A[i-1]\) 说明不可行,否则通过;如果 \(A[i] \geq A[i-1]\) ,则把 \(A[i]\) 降低到与 \(A[i-1]\) 相等为了给后面留空间,但可能降低不到,所以 \(A[i] = max(A[i]-mid,A[i-1])\) 。
最后如果循环结束没有跳出,就是可行方案。
为了不修改 \(A[i]\) ,用 \(pre\) 保存上一个点数据。
时间复杂度 \(O(n \log Mod)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
int n, a[5000007], s[4], mod;
int f(int x) {
return (1LL * s[0] * x % mod * x % mod * x % mod +
1LL * s[1] * x % mod * x % mod +
1LL * s[2] * x % mod +
s[3]) % mod;
}
bool check(int mid) {
int pre = 1 << 31;
for (int i = 1;i <= n;i++) {
if (a[i] >= pre) pre = max(pre, a[i] - mid);
else if (a[i] + mid < pre) return 0;
}
return 1;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> s[0] >> s[1] >> s[2] >> s[3] >> a[1] >> mod;
for (int i = 2;i <= n;i++)
a[i] = (f(a[i - 1]) + f(a[i - 2])) % mod;
int l = 0, r = mod;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) r = mid - 1;
else l = mid + 1;
}
cout << l << '\n';
return 0;
}
NC20012 [HEOI2014]南园满地堆轻絮的更多相关文章
- BZOJ_3613_[Heoi2014]南园满地堆轻絮_二分答案
BZOJ_3613_[Heoi2014]南园满地堆轻絮_二分答案 Description 小 Z 是 ZRP(Zombies’ Republic of Poetry,僵尸诗歌共和国)的一名诗歌爱好者, ...
- 【BZOJ3613】[HEOI2014]南园满地堆轻絮(贪心)
[BZOJ3613][HEOI2014]南园满地堆轻絮(贪心) 题面 BZOJ 洛谷 题解 考虑二分的做法,每次二分一个答案,那么就会让所有的值尽可能的减少,那么\(O(n)\)扫一遍就好了. 考虑如 ...
- 3613: [Heoi2014]南园满地堆轻絮
3613: [Heoi2014]南园满地堆轻絮 Time Limit: 50 Sec Memory Limit: 256 MB Submit: 827 Solved: 534 [Submit][Sta ...
- [HEOI2014]南园满地堆轻絮
[HEOI2014]南园满地堆轻絮 BZOJ luogu 二分答案贪心check 首先b[1]最小一定优 之后就贪心的最小化b[i]就行 #include<bits/stdc++.h> u ...
- [luogu] P4105 [HEOI2014]南园满地堆轻絮 (贪心)
P4105 [HEOI2014]南园满地堆轻絮 题目描述 小 Z 是 ZRP(Zombies' Republic of Poetry,僵尸诗歌共和国)的一名诗歌爱好者,最近 他研究起了诗词音律的问题. ...
- [BZOJ3613][Heoi2014]南园满地堆轻絮 二分答案
Description 小 Z 是 ZRP(Zombies’ Republic of Poetry,僵尸诗歌共和国)的一名诗歌爱好者,最近 他研究起了诗词音律的问题. 在过去,诗词是需要编成曲子唱 ...
- BZOJ3613: [Heoi2014]南园满地堆轻絮
分析: 构造数据时间有些长,可以用秦九韶优化一下. 二分答案+贪心,即:另每一个b[i]尽可能的小的同时满足题意,在枚举过程中,判断是否存在一个b[i-1]>a[i]+x 如果存在,那么向右找 ...
- BZOJ 3613: [Heoi2014]南园满地堆轻絮(二分)
题面: https://www.lydsy.com/JudgeOnline/problem.php?id=3613 题解: 考虑前面的数越小答案越优秀,于是我们二分答案,判断时让前面的数达到所能达到的 ...
- 2018.07.22 bzoj3613: [Heoi2014]南园满地堆轻絮(逆序对结论题)
传送门 做这道题有一个显然的结论,就是要使这个数列单调不减,就要使所有逆序对保证单调不减,也就是求出所有逆序对的最大差值,然后除以2然后就没了. 代码如下: #include<bits/stdc ...
随机推荐
- python基础练习题(题目 递归求等差数列)
day20 --------------------------------------------------------------- 实例028:递归求等差数列 题目 有5个人坐在一起,问第5个 ...
- 深度剖析text-align家族
大家好,我是半夏,一个刚刚开始写文的沙雕程序员.如果喜欢我的文章,可以关注 点赞 加我微信:frontendpicker,一起学习交流前端,成为更优秀的工程师-关注公众号:搞前端的半夏,了解更多前端知 ...
- 基础的CSS描绘测试
1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...
- 项目完成 - 基于Django3.x版本 - 开发部署小结
前言 最近因为政企部门的工作失误,导致我们的项目差点挂掉,客户意见很大,然后我们只能被动进入007加班状态,忙得嗷嗷叫,直到今天才勉强把项目改完交付,是时候写一个小结. 技术 因为前期需求不明确,数据 ...
- 攻防世界-MISC:SimpleRAR
这是攻防世界新手练习区的第十题,题目如下: 点击下载附件1,是一个RAR文件,解压一下,得到flag.txt文件,激动的点进去看一下 好吧,就知道没有这么简单,用010editor打开这个RAR文件, ...
- 前后端分离,简单JWT登录详解
前后端分离,简单JWT登录详解 目录 前后端分离,简单JWT登录详解 JWT登录流程 1. 用户认证处理 2. 前端登录 3. 前端请求处理 4. 后端请求处理 5. 前端页面跳转处理 6. 退出登录 ...
- stm32F103C8T6通过写寄存器点亮LED灯
因为我写寄存器的操作不太熟练,所以最近腾出时间学习了一下怎么写寄存器,现在把我的经验贴出来,如有不足请指正 我使用的板子是stm32F103C8T6(也就是最常用的板子),现在要通过写GPIO的寄存器 ...
- k8s和Docker关系简单说明
关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ 这篇文章主要介绍了k8s和Docker关系简单说明,本文利用图文讲解的很透彻,有需要的同学可以 ...
- Oracle 常用运维命令整理
点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 一.oracle建库与删库命令 (1)oracle11g ...
- 【Azure Redis 缓存】 Python连接Azure Redis, 使用redis.ConnectionPool 出现 "ConnectionResetError: [Errno 104] Connection reset by peer"
问题描述 Python连接Azure Redis, 使用redis.ConnectionPool 出现 "ConnectionResetError: [Errno 104] Connecti ...