符号说明

\(top\_k\): 当前用户预测分最高的k个items,预测分由高到低排序

$pos$: 当前用户实际点击过的items

\(N\): 测试用户数量

示例数据

N = 4

| len(top_k & pos) | len(pos) | 预测中(四声)的item在top_k中的位置(1为预测中,长度为用户实际点击过的items长度)

| ---- | ---- | ---- |

| 1 | 2 | 1 0

| 2 | 3 | 0 1 1

| 3 | 4 | 1 0 1 1

| 0 | 3 | 0 0 0

一、Hit Rate

网上有2种定义方式,不知道哪个更为正确的,有知道的人能不能麻烦告诉我一下?

第一种

对所有用户:我们真正喜欢的物品中,你给我们推荐了多少

hit = 0
total = 0
for i in users:
top_k = 获取top_k的代码
hit += len(top_k & pos)
total += len(pos) hit_rate = hit / total

\(hit\_rate = \frac{1 + 2 + 3 + 0}{2 + 3 + 4 + 5}\)

第二种

被推荐到喜欢物品的用户占总用户的比例

hit = 0
for i in users:
top_k = 获取top_k的代码
if top_k中有预测到pos中的item:
hit += 1
hit_rate = hit / N

\(hit\_rate = \frac{1 + 1 + 1 + 0}{4}\)

二、Recall

对某个用户:我真正喜欢的物品中,你给我推荐了多少

recall = 0
for i in users:
top_k = xxx(i)
recall += len(top_k & pos) / len(pos) # 用户i的recall
recall = mean(recall)

\(recall = (\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{0}{3})\ /\ 4\)

三、NDCG

对某个用户:实际的折扣累计收益 DCG (Discounted Cumulative Gain) / 理想的DCG

DCG:考虑位置因素,希望用户喜欢的物品在top_k中排得越前越好

iDCG:归一化,解决【不同用户的DCG求和项数不同,不能进行比较】的问题

NDCG = 0
for i in users:
DCG = 0
iDCG = 0
top_k = xxx(i)
for rank in range(k):
if top_k[rank] in pos:
DCG += 1 / log2(rank + 2)
for i in range(min(k, len(pos))):
iDCG += 1 / log2(i + 2)
NDCG_u = DCG / iDCG
NDCG += NDCG_u
NDCG = mean(NDCG)

推荐系统 TOP K 评价指标的更多相关文章

  1. [LeetCode] Top K Frequent Elements 前K个高频元素

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  2. Leetcode 347. Top K Frequent Elements

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  3. 大数据热点问题TOP K

    1单节点上的topK (1)批量数据 数据结构:HashMap, PriorityQueue 步骤:(1)数据预处理:遍历整个数据集,hash表记录词频 (2)构建最小堆:最小堆只存k个数据. 时间复 ...

  4. LeetCode "Top K Frequent Elements"

    A typical solution is heap based - "top K". Complexity is O(nlgk). typedef pair<int, un ...

  5. [IR] Ranking - top k

    PageRanking 通过: Input degree of link "Flow" model - 流量判断喜好度 传统的方式又是什么呢? Every term在某个doc中的 ...

  6. 347. Top K Frequent Elements

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  7. 面试题:m个长度为n的ordered array,求top k 个 数字

    package com.sinaWeibo.interview; import java.util.Comparator; import java.util.Iterator; import java ...

  8. get top k elements of the same key in hive

    key points: 1. group by key and sort by using distribute by and sort by. 2. get top k elements by a ...

  9. Top k问题(线性时间选择算法)

    问题描述:给定n个整数,求其中第k小的数. 分析:显然,对所有的数据进行排序,即很容易找到第k小的数.但是排序的时间复杂度较高,很难达到线性时间,哈希排序可以实现,但是需要另外的辅助空间. 这里我提供 ...

随机推荐

  1. zookeeper从小白到精通

    目录 1.介绍 1.1概念 1.2特点 1.3主要的集群步骤 1.4数据结构 1.5应用场景 2.本地安装 2.1安装jdk 2.2下载安装 2.3配置文件修改 2.4启动服务端 2.5启动客户端 2 ...

  2. [Lua游戏AI开发指南] 笔记零 - 框架搭建

    一.图书详情 <Lua游戏AI开发指南>,原作名: Learning Game AI Programming with Lua. 豆瓣:https://book.douban.com/su ...

  3. 面试官:volatile关键字用过吧?说一下作用和实现吧

    volatile    可见性的本质类似于CPU的缓存一致性问题,线程内部的副本类似于告诉缓存区 面试官:volatile关键字用过吧?说一下作用和实现吧 https://blog.csdn.net/ ...

  4. 分布式锁redis

    1. 首先看这篇文章中  https://mp.weixin.qq.com/s/s-ozSjM5WmSUopxttSWYeQ 为什么redis能实现锁功能呢,看下图,redis命令窗口中,setnx  ...

  5. BLOB 和 TEXT 有什么区别?

    BLOB 是一个二进制对象,可以容纳可变数量的数据.TEXT 是一个不区分大小写 的 BLOB. BLOB 和 TEXT 类型之间的唯一区别在于对 BLOB 值进行排序和比较时区分大小 写,对 TEX ...

  6. 解释JDBC抽象和DAO模块?

    通过使用JDBC抽象和DAO模块,保证数据库代码的简洁,并能避免数据库资源错误关闭导致的问题,它在各种不同的数据库的错误信息之上,提供了一个统一的异常访问层.它还利用Spring的AOP 模块给Spr ...

  7. 什么时候使用session?什么时候使用application?

    application:程序全局变量对象,对每个用户每个页面都有效session:用户全局变量,对于该用户的所有操作过程都有效

  8. 为什么要使用 rabbitmq?

    1.在分布式系统下具备异步,削峰,负载均衡等一系列高级功能; 2.拥有持久化的机制,进程消息,队列中的信息也可以保存下来. 3.实现消费者和生产者之间的解耦. 4.对于高并发场景下,利用消息队列可以使 ...

  9. 学习GlusterFS(二)

    环境准备 3台机器,每个机器双网卡,每个机器还需要额外添加1个10GB的磁盘用于测试 机器系统版本是centos6.6 1 2 3 4 5 [root@gluster-1-1 ~]# uname -r ...

  10. Python - set类型