MKL库矩阵乘法
此示例是利用Intel 的MKL库函数计算矩阵的乘法,目标为:\(C=\alpha*A*B+\beta*C\),由函数cblas_dgemm实现;
其中\(A\)为\(m\times k\)维矩阵,\(B\)为\(k\times n\)维矩阵,\(C\)为\(m\times n\)维矩阵。
1 cblas_dgemm参数详解
fun cblas_dgemm(Layout, //指定行优先(CblasRowMajor,C)或列优先(CblasColMajor,Fortran)数据排序
TransA, //指定是否转置矩阵A
TransB, //指定是否转置矩阵B
M, //矩阵A和C的行数
N, //矩阵B和C的列数
K, //矩阵A的列,B的行
alpha, //矩阵A和B乘积的比例因子
A, //A矩阵
lda, //矩阵A的第一维的大小
B, //B矩阵
ldb, //矩阵B的第一维的大小
beta, //矩阵C的比例因子
C, //(input/output) 矩阵C
ldc //矩阵C的第一维的大小
)
cblas_dgemm矩阵乘法默认的算法就是\(C=\alpha*A*B+\beta*C\),若只需矩阵\(A\)与\(B\)的乘积,设置\(\alpha=1,\beta=0\)即可。
2 定义待处理矩阵
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h" // 调用mkl头文件
#define min(x,y) (((x) < (y)) ? (x) : (y))
double* A, * B, * C; //声明三个矩阵变量,并分配内存
int m, n, k, i, j; //声明矩阵的维度,其中
double alpha, beta;
m = 2000, k = 200, n = 1000;
alpha = 1.0; beta = 0.0;
A = (double*)mkl_malloc(m * k * sizeof(double), 64); //按照矩阵维度分配内存
B = (double*)mkl_malloc(k * n * sizeof(double), 64); //mkl_malloc用法与malloc相似,64表示64位
C = (double*)mkl_malloc(m * n * sizeof(double), 64);
if (A == NULL || B == NULL || C == NULL) { //判空
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 1;
}
for (i = 0; i < (m * k); i++) { //赋值
A[i] = (double)(i + 1);
}
for (i = 0; i < (k * n); i++) {
B[i] = (double)(-i - 1);
}
for (i = 0; i < (m * n); i++) {
C[i] = 0.0;
}
其中\(A\)和\(B\)矩阵设置为:
A = \left[ {\begin{array}{*{20}{c}}
{1.0}&{2.0}& \cdots &{1000.0}\\
{1001.0}&{1002.0}& \cdots &{2000.0}\\
\vdots & \vdots & \ddots & \cdots \\
{999001.0}&{999002.0}& \cdots &{1000000.0}
\end{array}} \right] \space
B = \left[ {\begin{array}{*{20}{c}}
{-1.0}&{-2.0}& \cdots &{-1000.0}\\
{-1001.0}&{-1002.0}& \cdots &{-2000.0}\\
\vdots & \vdots & \ddots & \cdots \\
{-999001.0}&{-999002.0}& \cdots &{-1000000.0}
\end{array}} \right]
\end{array}
\]
\(C\)矩阵为全0。
3 执行矩阵乘法
回到例子中,对照上面的参数,将C矩阵用A与B的矩阵乘法表示:
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, A, k, B, n, beta, C, n);
//在执行完成后,释放内存
mkl_free(A);
mkl_free(B);
mkl_free(C);
执行后的得到结果如下:

完整代码
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"
#define min(x,y) (((x) < (y)) ? (x) : (y))
int main()
{
double* A, * B, * C;
int m, n, k, i, j;
double alpha, beta;
m = 2000, k = 200, n = 1000;
alpha = 1.0; beta = 0.0;
A = (double*)mkl_malloc(m * k * sizeof(double), 64);
B = (double*)mkl_malloc(k * n * sizeof(double), 64);
C = (double*)mkl_malloc(m * n * sizeof(double), 64);
if (A == NULL || B == NULL || C == NULL) {
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 1;
}
for (i = 0; i < (m * k); i++) {
A[i] = (double)(i + 1);
}
for (i = 0; i < (k * n); i++) {
B[i] = (double)(-i - 1);
}
for (i = 0; i < (m * n); i++) {
C[i] = 0.0;
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, A, k, B, n, beta, C, n);
for (i = 0; i < min(m, 6); i++) {
for (j = 0; j < min(k, 6); j++) {
printf("%12.0f", A[j + i * k]);
}
printf("\n");
}
for (i = 0; i < min(k, 6); i++) {
for (j = 0; j < min(n, 6); j++) {
printf("%12.0f", B[j + i * n]);
}
printf("\n");
}
for (i = 0; i < min(m, 6); i++) {
for (j = 0; j < min(n, 6); j++) {
printf("%12.5G", C[j + i * n]);
}
printf("\n");
}
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 0;
}
MKL库矩阵乘法的更多相关文章
- Eigen ,MKL和 matlab 矩阵乘法速度比较
Eigen 矩阵乘法的速度 < MKL矩阵乘法的速度,MKL矩阵乘法的速度与matlab矩阵乘法的速度相差不大,但matlab GPU版本的矩阵乘法速度是CUP的两倍,在采用float数据类型 ...
- [转]OpenBLAS项目与矩阵乘法优化
课程内容 OpenBLAS项目介绍 矩阵乘法优化算法 一步步调优实现 以下为公开课完整视频,共64分钟: 以下为公开课内容的文字及 PPT 整理. 雷锋网的朋友们大家好,我是张先轶,今天主要介绍一下我 ...
- 有关CUBLAS中的矩阵乘法函数
关于cuBLAS库中矩阵乘法相关的函数及其输入输出进行详细讨论. ▶ 涨姿势: ● cuBLAS中能用于运算矩阵乘法的函数有4个,分别是 cublasSgemm(单精度实数).cublasDgemm( ...
- CPU的自动调度矩阵乘法
CPU的自动调度矩阵乘法 这是一个有关如何对CPU使用自动调度程序的文档. 与依靠手动模板定义搜索空间的基于模板的autotvm不同,自动调度程序不需要任何模板.用户只需要编写计算声明,而无需任何调度 ...
- MKL库奇异值分解(LAPACKE_dgesvd)
对任意一个\(m\times n\)的实矩阵,总可以按照SVD算法对其进行分解.即: \[A = U\Sigma V^T \] 其中\(U.V\)分别为\(m\times m.n\times n\)的 ...
- *HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
- *HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- CH Round #30 摆花[矩阵乘法]
摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...
- POJ3070 Fibonacci[矩阵乘法]
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13677 Accepted: 9697 Descri ...
随机推荐
- Windows 7/8 64位系统 不能注册32位dll 文件的解决方案
这几天碰到一个问题,运行一个易语言开发的软件出现以下错误.我的系统是 Windows7 64 位 专业版.在系统盘 windows/system32 下查找 dm.dll.但是没有这个文件.于是我到 ...
- 计算机网络:套接字(Socket)| Python socket实现服务器端与客户端通信,使用TCP socket阿里云ECS服务器与本机通信
所谓套接字(Socket),就是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象.一个套接字就是网络上进程通信的一端,提供了应用层进程利用网络协议交换数据的机制.从所处的地位来讲,套接字上联应 ...
- Java 中计算注意!!!
* 使用BigDecimal需要注意的事项: * 1.两个BigDecimal值不能使用" +, -, *, / " 进行加减乘除,要使用" add, substrac ...
- 在Spring AOP 中,关注点和横切关注的区别是什么?
关注点是应用中一个模块的行为,一个关注点可能会被定义成一个我们想实现的一个功能. 横切关注点是一个关注点,此关注点是整个应用都会使用的功能,并影响整个应用,比如日志,安全和数据传输,几乎应用的每个模块 ...
- 说说finally和final的区别
final用于声明属性,方法和类,分别表示属性不可变,方法不可覆盖,类不可继承.内部类要访问局部变量,局部变量必须定义成final类型. finally是异常处理语句结构的一部分,表示总是 ...
- Java 中,Maven 和 ANT 有什么区别?
虽然两者都是构建工具,都用于创建 Java 应用,但是 Maven 做的事情更多, 在基于"约定优于配置"的概念下,提供标准的 Java 项目结构,同时能为应用自 动管理依赖(应用 ...
- 解决引用类型为什么打出的是地址值,又怎么改成输出属性值(toString()底层)
一丶toString的源码解析: 一丶object的toString的源码解析: 集合中toString源码分析: 小结: 改成输出属性值 在父类中重写toString();方法 快捷键:Alt+In ...
- MTK平台电路设计01
一.资料 获取途径MTK官网.一牛网 二.
- 编译器警告c4996
由于编译器的原因(我用的是vs 2012),我们写程序时有时候会遇到编译器给出的警告,如: warning C4996: 'fopen': This function or variable may ...
- 外部晶振的使用原因与内部RC振荡器的使用方法
原因一 早些年,芯片的生产制作工艺也许还不能够将晶振做进芯片内部,但是现在可以了.这个问题主要还是实用性和成本决定的. 原因二 芯片和晶振的材料是不同的,芯片 (集成电路) 的材料是硅,而晶体则是 ...