线性回归

波士顿房价预测案例

步骤

  • 导入数据
  • 数据分割
  • 数据标准化
  • 正规方程预测
  • 梯度下降预测
# 导入模块
import pandas as pd # 导入数据
from sklearn.model_selection import train_test_split # 数据分割
from sklearn.preprocessing import StandardScaler # 数据标准化
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge # 正规方程,梯度下降, 岭回归
from sklearn.metrics import mean_squared_error # 均方差
import numpy as np
# 读取Boston房价数据
boston = pd.read_csv("./boston_house_prices.csv")
y = boston["MEDV"] # MEDV为离散型目标值
x = boston.drop(["MEDV"],axis=1) # 其他数据为特征值
x
.dataframe tbody tr th:only-of-type { vertical-align: middle }
\3cpre>\3ccode>.dataframe tbody tr th { vertical-align: top }
.dataframe thead th { text-align: right }

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT
0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98
1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14
2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03
3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94
4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33
... ... ... ... ... ... ... ... ... ... ... ... ... ...
501 0.06263 0.0 11.93 0 0.573 6.593 69.1 2.4786 1 273 21.0 391.99 9.67
502 0.04527 0.0 11.93 0 0.573 6.120 76.7 2.2875 1 273 21.0 396.90 9.08
503 0.06076 0.0 11.93 0 0.573 6.976 91.0 2.1675 1 273 21.0 396.90 5.64
504 0.10959 0.0 11.93 0 0.573 6.794 89.3 2.3889 1 273 21.0 393.45 6.48
505 0.04741 0.0 11.93 0 0.573 6.030 80.8 2.5050 1 273 21.0 396.90 7.88

506 rows × 13 columns

# 数据标准化需要传入二维数组,所以需要改变目标值的形状
y = np.array(y).reshape(-1, 1)
# 划分测试集和训练集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 特征值标准化
std_x = StandardScaler().fit(x_train)
x_train = std_x.transform(x_train)
x_test = std_x.transform(x_test)
# 因为特征值标准化后,传入模型的系数会增大,所以目标值也需要进行标准化
std_y = StandardScaler().fit(y_train)
y_train = std_y.transform(y_train)
y_test = std_y.transform(y_test)
# 实例化线性回归
lr = LinearRegression()
# 传入测试集训练模型
lr.fit(x_train,y_train)

#sk-container-id-1 { color: rgba(0, 0, 0, 1); background-color: rgba(255, 255, 255, 1) }
#sk-container-id-1 pre { padding: 0 }
#sk-container-id-1 div.sk-toggleable { background-color: rgba(255, 255, 255, 1) }
#sk-container-id-1 label.sk-toggleable__label { cursor: pointer; display: block; width: 100%; margin-bottom: 0; padding: 0.3em; box-sizing: border-box; text-align: center }
#sk-container-id-1 label.sk-toggleable__label-arrow:before { content: "▸"; float: left; margin-right: 0.25em; color: rgba(105, 105, 105, 1) }
#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before { color: rgba(0, 0, 0, 1) }
#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before { color: rgba(0, 0, 0, 1) }
#sk-container-id-1 div.sk-toggleable__content { max-height: 0; max-width: 0; overflow: hidden; text-align: left; background-color: rgba(240, 248, 255, 1) }
#sk-container-id-1 div.sk-toggleable__content pre { margin: 0.2em; color: rgba(0, 0, 0, 1); border-radius: 0.25em; background-color: rgba(240, 248, 255, 1) }
#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content { max-height: 200px; max-width: 100%; overflow: auto }
#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before { content: "▾" }
#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-1 input.sk-hidden--visually { border: 0; clip: rect(1px, 1px, 1px, 1px); height: 1px; margin: -1px; overflow: hidden; padding: 0; position: absolute; width: 1px }
#sk-container-id-1 div.sk-estimator { font-family: monospace; background-color: rgba(240, 248, 255, 1); border: 1px dotted rgba(0, 0, 0, 1); border-radius: 0.25em; box-sizing: border-box; margin-bottom: 0.5em }
#sk-container-id-1 div.sk-estimator:hover { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-1 div.sk-parallel-item::after { content: ""; width: 100%; border-bottom: 1px solid rgba(128, 128, 128, 1); flex-grow: 1 }
#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-1 div.sk-serial::before { content: ""; position: absolute; border-left: 1px solid rgba(128, 128, 128, 1); box-sizing: border-box; top: 0; bottom: 0; left: 50%; z-index: 0 }
#sk-container-id-1 div.sk-serial { display: flex; flex-direction: column; align-items: center; background-color: rgba(255, 255, 255, 1); padding-right: 0.2em; padding-left: 0.2em; position: relative }
#sk-container-id-1 div.sk-item { position: relative; z-index: 1 }
#sk-container-id-1 div.sk-parallel { display: flex; align-items: stretch; justify-content: center; background-color: rgba(255, 255, 255, 1); position: relative }
#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before { content: ""; position: absolute; border-left: 1px solid rgba(128, 128, 128, 1); box-sizing: border-box; top: 0; bottom: 0; left: 50%; z-index: -1 }
#sk-container-id-1 div.sk-parallel-item { display: flex; flex-direction: column; z-index: 1; position: relative; background-color: rgba(255, 255, 255, 1) }
#sk-container-id-1 div.sk-parallel-item:first-child::after { align-self: flex-end; width: 50% }
#sk-container-id-1 div.sk-parallel-item:last-child::after { align-self: flex-start; width: 50% }
#sk-container-id-1 div.sk-parallel-item:only-child::after { width: 0 }
#sk-container-id-1 div.sk-dashed-wrapped { border: 1px dashed rgba(128, 128, 128, 1); margin: 0 0.4em 0.5em; box-sizing: border-box; padding-bottom: 0.4em; background-color: rgba(255, 255, 255, 1) }
#sk-container-id-1 div.sk-label label { font-family: monospace; font-weight: bold; display: inline-block; line-height: 1.2em }
#sk-container-id-1 div.sk-label-container { text-align: center }
#sk-container-id-1 div.sk-container { display: inline-block !important; position: relative }
#sk-container-id-1 div.sk-text-repr-fallback { display: none }

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

LinearRegression
LinearRegression()
# 查看线性回归的回归系数
lr.coef_
array([[-0.11432612,  0.12922939,  0.05168773,  0.0306429 , -0.27800333,
0.26465189, 0.02894241, -0.34962992, 0.31569604, -0.24717234,
-0.26784233, 0.11032066, -0.41354896]])
# 线性回归预测测试集的目标值,std_y.inverse_transform:返回标准化之前的值(反标准化)
y_lr_predict = std_y.inverse_transform(lr.predict(x_test))
y_lr_predict
array([[16.88302519],
[25.67464426],
[24.11685261],
[23.56287231],
[33.21442377],
[17.44428398],
[25.08538719],
[14.36188824],
[23.8507796 ],
[33.90875038],
[30.19255243],
[13.30811675],
[28.60383216],
[34.6094617 ],
[27.32666762],
[24.88310221],
[21.97377504],
[14.36080511],
[15.19834144],
[18.91688837],
[14.39284881],
[37.4279415 ],
[28.85628069],
[23.47343089],
[30.65979144],
[20.77177982],
[21.29899429],
[13.81410752],
[24.36591359],
[26.91067836],
[19.39456288],
[32.1620506 ],
[19.55908532],
[24.32677646],
[31.64841534],
[30.24445789],
[32.6601561 ],
[25.45770231],
[24.36812628],
[24.89892187],
[39.51204317],
[18.25845589],
[30.78050699],
[32.2023306 ],
[43.40712056],
[25.5830554 ],
[24.18175285],
[22.22948918],
[16.30284868],
[27.20443307],
[ 4.3558633 ],
[18.24971547],
[17.84402513],
[14.26170574],
[13.64455453],
[34.67825232],
[ 8.26805278],
[23.65092602],
[ 6.3965518 ],
[21.25451713],
[15.71560149],
[29.29210802],
[29.4266973 ],
[19.91658528],
[14.95841515],
[20.88449625],
[28.59263417],
[23.78937845],
[23.4489951 ],
[11.0440392 ],
[19.4491492 ],
[15.48416226],
[18.68260651],
[24.20199734],
[15.78191346],
[14.11243619],
[22.94901405],
[24.02549373],
[21.11185284],
[28.57665473],
[ 7.45548609],
[22.77052456],
[ 3.44149312],
[15.93067248],
[25.72200382],
[22.56825235],
[32.70873719],
[17.86289514],
[24.49691931],
[35.25395986],
[26.98360999],
[17.51000169],
[28.08531514],
[21.15268973],
[24.73138251],
[-4.82364972],
[21.34031184],
[21.89560028],
[16.35765837],
[35.32764197],
[40.95997005],
[23.59853443],
[19.92593809],
[34.43871021],
[21.37340243],
[20.48191389],
[23.77537201],
[28.67150943],
[40.73850694],
[29.38542779],
[21.25032737],
[22.15530128],
[31.1447006 ],
[17.18008197],
[38.09276107],
[18.17714902],
[26.01850231],
[13.73181577],
[12.47399654],
[27.01659936],
[18.62962667],
[11.26915964],
[19.48824649],
[23.64510406],
[18.88328087],
[19.49037977],
[13.58238162]])
# 线性回归预测的均方差(损失值)
loss_lr = mean_squared_error(std_y.inverse_transform(y_test), y_lr_predict)
loss_lr
27.89401984711536
# 实例化梯度下降回归
sgd = SGDRegressor()
sgd.fit(x_train, y_train)
D:\DeveloperTools\Anaconda\lib\site-packages\sklearn\utils\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)

#sk-container-id-2 { color: rgba(0, 0, 0, 1); background-color: rgba(255, 255, 255, 1) }
#sk-container-id-2 pre { padding: 0 }
#sk-container-id-2 div.sk-toggleable { background-color: rgba(255, 255, 255, 1) }
#sk-container-id-2 label.sk-toggleable__label { cursor: pointer; display: block; width: 100%; margin-bottom: 0; padding: 0.3em; box-sizing: border-box; text-align: center }
#sk-container-id-2 label.sk-toggleable__label-arrow:before { content: "▸"; float: left; margin-right: 0.25em; color: rgba(105, 105, 105, 1) }
#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before { color: rgba(0, 0, 0, 1) }
#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before { color: rgba(0, 0, 0, 1) }
#sk-container-id-2 div.sk-toggleable__content { max-height: 0; max-width: 0; overflow: hidden; text-align: left; background-color: rgba(240, 248, 255, 1) }
#sk-container-id-2 div.sk-toggleable__content pre { margin: 0.2em; color: rgba(0, 0, 0, 1); border-radius: 0.25em; background-color: rgba(240, 248, 255, 1) }
#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content { max-height: 200px; max-width: 100%; overflow: auto }
#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before { content: "▾" }
#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-2 input.sk-hidden--visually { border: 0; clip: rect(1px, 1px, 1px, 1px); height: 1px; margin: -1px; overflow: hidden; padding: 0; position: absolute; width: 1px }
#sk-container-id-2 div.sk-estimator { font-family: monospace; background-color: rgba(240, 248, 255, 1); border: 1px dotted rgba(0, 0, 0, 1); border-radius: 0.25em; box-sizing: border-box; margin-bottom: 0.5em }
#sk-container-id-2 div.sk-estimator:hover { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-2 div.sk-parallel-item::after { content: ""; width: 100%; border-bottom: 1px solid rgba(128, 128, 128, 1); flex-grow: 1 }
#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-2 div.sk-serial::before { content: ""; position: absolute; border-left: 1px solid rgba(128, 128, 128, 1); box-sizing: border-box; top: 0; bottom: 0; left: 50%; z-index: 0 }
#sk-container-id-2 div.sk-serial { display: flex; flex-direction: column; align-items: center; background-color: rgba(255, 255, 255, 1); padding-right: 0.2em; padding-left: 0.2em; position: relative }
#sk-container-id-2 div.sk-item { position: relative; z-index: 1 }
#sk-container-id-2 div.sk-parallel { display: flex; align-items: stretch; justify-content: center; background-color: rgba(255, 255, 255, 1); position: relative }
#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before { content: ""; position: absolute; border-left: 1px solid rgba(128, 128, 128, 1); box-sizing: border-box; top: 0; bottom: 0; left: 50%; z-index: -1 }
#sk-container-id-2 div.sk-parallel-item { display: flex; flex-direction: column; z-index: 1; position: relative; background-color: rgba(255, 255, 255, 1) }
#sk-container-id-2 div.sk-parallel-item:first-child::after { align-self: flex-end; width: 50% }
#sk-container-id-2 div.sk-parallel-item:last-child::after { align-self: flex-start; width: 50% }
#sk-container-id-2 div.sk-parallel-item:only-child::after { width: 0 }
#sk-container-id-2 div.sk-dashed-wrapped { border: 1px dashed rgba(128, 128, 128, 1); margin: 0 0.4em 0.5em; box-sizing: border-box; padding-bottom: 0.4em; background-color: rgba(255, 255, 255, 1) }
#sk-container-id-2 div.sk-label label { font-family: monospace; font-weight: bold; display: inline-block; line-height: 1.2em }
#sk-container-id-2 div.sk-label-container { text-align: center }
#sk-container-id-2 div.sk-container { display: inline-block !important; position: relative }
#sk-container-id-2 div.sk-text-repr-fallback { display: none }

SGDRegressor()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

SGDRegressor
SGDRegressor()
# 查看梯度下降回归的回归系数
sgd.coef_
array([-0.09761234,  0.08895746, -0.02421963,  0.02879482, -0.17976106,
0.30861884, -0.00250273, -0.27224473, 0.12435245, -0.0780263 ,
-0.24480836, 0.12012805, -0.38888841])
# 梯度下降回归预测测试集的目标值,std_y.inverse_transform:返回标准化之前的值(反标准化)
y_sgd_predict = std_y.inverse_transform(sgd.predict(x_test).reshape(-1,1))
y_sgd_predict
array([[15.21420286],
[24.63693863],
[24.39828101],
[24.13982716],
[32.78620978],
[17.93179618],
[26.15279053],
[14.48966421],
[23.47566531],
[33.17239509],
[31.84452891],
[12.45562282],
[27.95300787],
[33.80241039],
[28.49956651],
[24.66480492],
[22.36941513],
[12.77314567],
[16.19679874],
[19.55497851],
[16.56475828],
[37.33119072],
[28.7775393 ],
[20.96986273],
[30.61621249],
[21.02209026],
[21.7295418 ],
[12.81210827],
[24.5110437 ],
[26.43938704],
[18.35264658],
[32.65009183],
[18.43526582],
[23.00618081],
[31.7400822 ],
[29.04743561],
[33.05208407],
[25.74448792],
[24.50083552],
[25.60223044],
[39.54513459],
[17.1185942 ],
[31.03740088],
[31.08938082],
[43.05539907],
[25.73953331],
[24.94663261],
[22.54125585],
[18.28413619],
[26.10355346],
[ 6.00742562],
[17.91294014],
[18.30811745],
[12.44053594],
[12.80928627],
[35.3744289 ],
[ 9.09787342],
[22.93659674],
[ 5.43064498],
[21.74836536],
[14.35146387],
[29.01003788],
[29.08635743],
[22.73088123],
[14.63525207],
[21.85792442],
[27.65781677],
[23.792957 ],
[24.6814747 ],
[10.92976509],
[19.83990001],
[15.96966791],
[18.14900105],
[25.20832651],
[13.27422495],
[14.30232772],
[23.11242467],
[25.77201334],
[19.68444307],
[28.57611678],
[ 7.63364889],
[20.4696819 ],
[ 2.27690801],
[16.55235057],
[25.58622675],
[22.77961526],
[32.47346299],
[17.77241159],
[22.97811939],
[36.08937688],
[26.73491284],
[18.29474336],
[29.46454709],
[21.71750293],
[26.04970043],
[-5.49919448],
[22.22155065],
[22.98441588],
[15.12536374],
[35.73982924],
[40.87874356],
[23.690842 ],
[20.5993433 ],
[35.69123855],
[20.68804356],
[20.94190843],
[26.02227126],
[31.17410177],
[40.95630421],
[29.90544672],
[23.50763821],
[22.27432439],
[29.64014839],
[16.78407484],
[38.12893576],
[17.69781499],
[25.22891716],
[14.21875615],
[12.55974345],
[26.99891265],
[17.65595579],
[ 8.4159419 ],
[19.90142312],
[22.80759632],
[19.16843753],
[19.42995139],
[14.04081021]])
# 梯度下降回归预测的均方差(损失值)
loss_sgd = mean_squared_error(std_y.inverse_transform(y_test), y_sgd_predict)
loss_sgd
28.05592202385498
# 实例化岭回归 param:alpha(正则化力度)
rd = Ridge(alpha=1.0)
# 传入训练集 训练模型
rd.fit(x_train,y_train)

#sk-container-id-3 { color: rgba(0, 0, 0, 1); background-color: rgba(255, 255, 255, 1) }
#sk-container-id-3 pre { padding: 0 }
#sk-container-id-3 div.sk-toggleable { background-color: rgba(255, 255, 255, 1) }
#sk-container-id-3 label.sk-toggleable__label { cursor: pointer; display: block; width: 100%; margin-bottom: 0; padding: 0.3em; box-sizing: border-box; text-align: center }
#sk-container-id-3 label.sk-toggleable__label-arrow:before { content: "▸"; float: left; margin-right: 0.25em; color: rgba(105, 105, 105, 1) }
#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before { color: rgba(0, 0, 0, 1) }
#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before { color: rgba(0, 0, 0, 1) }
#sk-container-id-3 div.sk-toggleable__content { max-height: 0; max-width: 0; overflow: hidden; text-align: left; background-color: rgba(240, 248, 255, 1) }
#sk-container-id-3 div.sk-toggleable__content pre { margin: 0.2em; color: rgba(0, 0, 0, 1); border-radius: 0.25em; background-color: rgba(240, 248, 255, 1) }
#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content { max-height: 200px; max-width: 100%; overflow: auto }
#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before { content: "▾" }
#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-3 input.sk-hidden--visually { border: 0; clip: rect(1px, 1px, 1px, 1px); height: 1px; margin: -1px; overflow: hidden; padding: 0; position: absolute; width: 1px }
#sk-container-id-3 div.sk-estimator { font-family: monospace; background-color: rgba(240, 248, 255, 1); border: 1px dotted rgba(0, 0, 0, 1); border-radius: 0.25em; box-sizing: border-box; margin-bottom: 0.5em }
#sk-container-id-3 div.sk-estimator:hover { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-3 div.sk-parallel-item::after { content: ""; width: 100%; border-bottom: 1px solid rgba(128, 128, 128, 1); flex-grow: 1 }
#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label { background-color: rgba(212, 235, 255, 1) }
#sk-container-id-3 div.sk-serial::before { content: ""; position: absolute; border-left: 1px solid rgba(128, 128, 128, 1); box-sizing: border-box; top: 0; bottom: 0; left: 50%; z-index: 0 }
#sk-container-id-3 div.sk-serial { display: flex; flex-direction: column; align-items: center; background-color: rgba(255, 255, 255, 1); padding-right: 0.2em; padding-left: 0.2em; position: relative }
#sk-container-id-3 div.sk-item { position: relative; z-index: 1 }
#sk-container-id-3 div.sk-parallel { display: flex; align-items: stretch; justify-content: center; background-color: rgba(255, 255, 255, 1); position: relative }
#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before { content: ""; position: absolute; border-left: 1px solid rgba(128, 128, 128, 1); box-sizing: border-box; top: 0; bottom: 0; left: 50%; z-index: -1 }
#sk-container-id-3 div.sk-parallel-item { display: flex; flex-direction: column; z-index: 1; position: relative; background-color: rgba(255, 255, 255, 1) }
#sk-container-id-3 div.sk-parallel-item:first-child::after { align-self: flex-end; width: 50% }
#sk-container-id-3 div.sk-parallel-item:last-child::after { align-self: flex-start; width: 50% }
#sk-container-id-3 div.sk-parallel-item:only-child::after { width: 0 }
#sk-container-id-3 div.sk-dashed-wrapped { border: 1px dashed rgba(128, 128, 128, 1); margin: 0 0.4em 0.5em; box-sizing: border-box; padding-bottom: 0.4em; background-color: rgba(255, 255, 255, 1) }
#sk-container-id-3 div.sk-label label { font-family: monospace; font-weight: bold; display: inline-block; line-height: 1.2em }
#sk-container-id-3 div.sk-label-container { text-align: center }
#sk-container-id-3 div.sk-container { display: inline-block !important; position: relative }
#sk-container-id-3 div.sk-text-repr-fallback { display: none }

Ridge()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Ridge
Ridge()
# 查看岭回归的回归系数
rd.coef_
array([[-0.11307323,  0.12670886,  0.0472335 ,  0.03097279, -0.27277927,
0.26649452, 0.02738887, -0.34543899, 0.30352311, -0.23553989,
-0.26624461, 0.11041044, -0.4112231 ]])
# 岭回归预测测试集的目标值,std_y.inverse_transform:返回标准化之前的值(反标准化)
y_rd_predict = std_y.inverse_transform(rd.predict(x_test))
y_rd_predict
array([[16.81586993],
[25.62225283],
[24.13239652],
[23.60178301],
[33.17482664],
[17.47603707],
[25.12448624],
[14.3927178 ],
[23.82242142],
[33.83569284],
[30.25910195],
[13.28992719],
[28.54601232],
[34.54914571],
[27.36491618],
[24.87707782],
[22.00096365],
[14.31750595],
[15.26655896],
[18.95164011],
[14.52104908],
[37.38819398],
[28.82792081],
[23.3211182 ],
[30.6343198 ],
[20.80233876],
[21.31839148],
[13.79005679],
[24.3590396 ],
[26.87702832],
[19.35529157],
[32.16020072],
[19.52355909],
[24.26581358],
[31.63175652],
[30.17323569],
[32.66670796],
[25.47912641],
[24.36217689],
[24.91701584],
[39.47302165],
[18.22458912],
[30.75058024],
[32.14915944],
[43.35075081],
[25.58142763],
[24.22487493],
[22.23864659],
[16.45656221],
[27.14231857],
[ 4.52270441],
[18.23427535],
[17.87417222],
[14.1986027 ],
[13.62643288],
[34.69768313],
[ 8.34275415],
[23.6132958 ],
[ 6.38923846],
[21.27558839],
[15.66185343],
[29.25676316],
[29.39607496],
[20.06328838],
[14.96702673],
[20.93444425],
[28.53639958],
[23.76724172],
[23.49637722],
[11.0745397 ],
[19.48381901],
[15.51875938],
[18.65960692],
[24.24100427],
[15.64918598],
[14.14894164],
[22.94337728],
[24.09499988],
[21.05268108],
[28.55429725],
[ 7.51316118],
[22.62833775],
[ 3.43124359],
[15.98036192],
[25.70480807],
[22.57033657],
[32.66624286],
[17.87124766],
[24.43818932],
[35.27111772],
[26.94613641],
[17.56269425],
[28.14078364],
[21.18918514],
[24.78403264],
[-4.78164143],
[21.36553975],
[21.94334785],
[16.31804996],
[35.31337498],
[40.90768652],
[23.60641046],
[19.94431495],
[34.4813584 ],
[21.35327276],
[20.51324011],
[23.90175952],
[28.77241981],
[40.73752328],
[29.39270623],
[21.38182702],
[22.15806225],
[31.07297608],
[17.17452852],
[38.05954909],
[18.16913598],
[25.97549364],
[13.78567603],
[12.51045123],
[26.99932827],
[18.59193795],
[11.15468796],
[19.52228306],
[23.60713735],
[18.8861402 ],
[19.4947593 ],
[13.61341828]])
# 岭回归预测的均方差(损失值)
loss_rd = mean_squared_error(std_y.inverse_transform(y_test), y_rd_predict)
loss_rd
27.836735080339313

机器学习08DAY的更多相关文章

  1. .NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

    Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器 ...

  2. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  3. 借助亚马逊S3和RapidMiner将机器学习应用到文本挖掘

    本挖掘典型地运用了机器学习技术,例如聚类,分类,关联规则,和预测建模.这些技术揭示潜在内容中的意义和关系.文本发掘应用于诸如竞争情报,生命科学,客户呼声,媒体和出版,法律和税收,法律实施,情感分析和趋 ...

  4. Android开发学习之路-机器学习库(图像识别)、百度翻译

    对于机器学习也不是了解的很深入,今天无意中在GitHub看到一个star的比较多的库,就用着试一试,效果也还行.比是可能比不上TensorFlow的,但是在Android上用起来比较简单,毕竟Tens ...

  5. 【NLP】基于机器学习角度谈谈CRF(三)

    基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...

  6. 机器学习实战笔记(Python实现)-08-线性回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  7. 机器学习实战笔记(Python实现)-06-AdaBoost

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  8. 机器学习实战笔记(Python实现)-05-支持向量机(SVM)

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  9. 机器学习实战笔记(Python实现)-04-Logistic回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  10. 机器学习实战笔记(Python实现)-03-朴素贝叶斯

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

随机推荐

  1. html 手机端适配不同手机高度 ,把内容居中显示

    手机端适配不同手机高度 ,把内容居中显示,可以将div.img.section.span.p等等元素,设置 top:50%; margin-top:xxvw; 这样可以保证主题内容居中显示.

  2. JavaScript 取消事件的默认动作

    preventDefault() 方法 Event 对象 定义和用法 取消事件的默认动作. 语法 event.preventDefault() 说明 该方法将通知 Web 浏览器不要执行与事件关联的默 ...

  3. List一边插入数据后又移除数据

    记录最简单的三种方法,直接上代码: List<String> list = new ArrayList<>(); list.add("1"); list.a ...

  4. 操作系统|01.Windows

    Windows基础 1.系统目录 1.1 C盘根目录 Data:Windows系统目录,放置程序的使用数据.设置等文件. MyDrivers:驱动程序文件夹. PerfLogs:日志文件夹. Prog ...

  5. VUE安装环境及项目创建

    Vue环境安装配置 安装git工具,便于在wind电脑上操作命令行,自行在网上下载安装,(可以不安装)使用cmd. 安装node,检查node安装是否成功,在git工具中输入node -v(如果成功的 ...

  6. JS笔记(二):数据类型

    镇楼图 Pixiv:torino 三.数据类型 原始类型 原始类型像是string.symbol.number之类的都只能存储原子值,而不能像对象一样随意扩展.但是为了提供额外功能,采取了轻量的对象包 ...

  7. python更新pip报错pip._vendor.urllib3.exceptions.ProxySchemeUnknown: Not supported proxy scheme None

    更新pip报错: 看到最后一行很明显是proxy的问题,查看cmd下的代理 将代理删掉重启cmd执行命令就不会报错了

  8. 【Win11】电脑开机内存占用过高

    联想拯救者 Y7000P 1.Win+R打开运行输入"MdSched"   重启 2.Windows PowerShell(管理员)->并运行该命令 Disable-MMAg ...

  9. go语言读取文件的简单使用

    注意:打开文件记得一定要关闭 file, err := os.Open("文件名称") defer file.Close() 一.打开文件 1. file, err := os.O ...

  10. P1706 全排列问题(DFS)

    全排列问题 题目描述 按照字典序输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字. 输入格式 一个整数n 输出格式 由1 ~ n组成的所有不重复的数字序列 ...