简介

我们知道在native的代码中有很多指针,这些指针在JNA中被映射成为Pointer。除了Pointer之外,JNA还提供了更加强大的Memory类,本文将会一起探讨JNA中的Pointer和Memory的使用。

Pointer

Pointer是JNA中引入的类,用来表示native方法中的指针。大家回想一下native方法中的指针到底是什么呢?

native方法中的指针实际上就是一个地址,这个地址就是真正对象的内存地址。所以在Pointer中定义了一个peer属性,用来存储真正对象的内存地址:

protected long peer;

实时上,Pointer的构造函数就需要传入这个peer参数:

public Pointer(long peer) {
this.peer = peer;
}

接下来我们看一下如何从Pointer中取出一个真正的对象,这里以byte数组为例:

    public void read(long offset, byte[] buf, int index, int length) {
Native.read(this, this.peer, offset, buf, index, length);
}

实际上这个方法调用了Native.read方法,我们继续看一下这个read方法:

static native void read(Pointer pointer, long baseaddr, long offset, byte[] buf, int index, int length);

可以看到它是一个真正的native方法,用来读取一个指针对象。

除了Byte数组之外,Pointer还提供了很多其他类型的读取方法。

又读取就有写入,我们再看下Pointer是怎么写入数据的:

    public void write(long offset, byte[] buf, int index, int length) {
Native.write(this, this.peer, offset, buf, index, length);
}

同样的,还是调用 Native.write方法来写入数据。

这里Native.write方法也是一个native方法:

static native void write(Pointer pointer, long baseaddr, long offset, byte[] buf, int index, int length);

Pointer还提供了很多其他类型数据的写入方法。

当然还有更加直接的get*方法:

public byte getByte(long offset) {
return Native.getByte(this, this.peer, offset);
}

特殊的Pointer:Opaque

在Pointer中,还有两个createConstant方法,用来创建不可读也不可写的Pointer:

    public static final Pointer createConstant(long peer) {
return new Opaque(peer);
} public static final Pointer createConstant(int peer) {
return new Opaque((long)peer & 0xFFFFFFFF);
}

实际上返回的而是Opaque类,这个类继承自Pointer,但是它里面的所有read或者write方法,都会抛出UnsupportedOperationException:

    private static class Opaque extends Pointer {
private Opaque(long peer) { super(peer); }
@Override
public Pointer share(long offset, long size) {
throw new UnsupportedOperationException(MSG);
}

Memory

Pointer是基本的指针映射,如果对于通过使用native的malloc方法分配的内存空间而言,除了Pointer指针的开始位置之外,我们还需要知道分配的空间大小。所以一个简单的Pointer是不够用了。

这种情况下,我们就需要使用Memory。

Memory是一种特殊的Pointer, 它保存了分配出来的空间大小。我们来看一下Memory的定义和它里面包含的属性:

public class Memory extends Pointer {
...
private static ReferenceQueue<Memory> QUEUE = new ReferenceQueue<Memory>();
private static LinkedReference HEAD; // the head of the doubly linked list used for instance tracking
private static final WeakMemoryHolder buffers = new WeakMemoryHolder();
private final LinkedReference reference; // used to track the instance
protected long size; // Size of the malloc'ed space
...
}

Memory里面定义了5个数据,我们接下来一一进行介绍。

首先是最为重要的size,size表示的是Memory中内存空间的大小,我们来看下Memory的构造函数:

    public Memory(long size) {
this.size = size;
if (size <= 0) {
throw new IllegalArgumentException("Allocation size must be greater than zero");
}
peer = malloc(size);
if (peer == 0)
throw new OutOfMemoryError("Cannot allocate " + size + " bytes"); reference = LinkedReference.track(this);
}

可以看到Memory类型的数据需要传入一个size参数,表示Memory占用的空间大小。当然,这个size必须要大于0.

然后调用native方法的malloc方法来分配一个内存空间,返回的peer保存的是内存空间的开始地址。如果peer==0,表示分配失败。

如果分配成功,则将当前Memory保存到LinkedReference中,用来跟踪当前的位置。

我们可以看到Memory中有两个LinkedReference,一个是HEAD,一个是reference。

LinkedReference本身是一个WeakReference,weekReference引用的对象只要垃圾回收执行,就会被回收,而不管是否内存不足。

private static class LinkedReference extends WeakReference<Memory>

我们看一下LinkedReference的构造函数:

private LinkedReference(Memory referent) {
super(referent, QUEUE);
}

这个QUEUE是ReferenceQueue,表示的是GC待回收的对象列表。

我们看到Memory的构造函数除了设置size之外,还调用了:

reference = LinkedReference.track(this);

仔细看LinkedReference.track方法:

   static LinkedReference track(Memory instance) {
// use a different lock here to allow the finialzier to unlink elements too
synchronized (QUEUE) {
LinkedReference stale; // handle stale references here to avoid GC overheating when memory is limited
while ((stale = (LinkedReference) QUEUE.poll()) != null) {
stale.unlink();
}
} // keep object allocation outside the syncronized block
LinkedReference entry = new LinkedReference(instance); synchronized (LinkedReference.class) {
if (HEAD != null) {
entry.next = HEAD;
HEAD = HEAD.prev = entry;
} else {
HEAD = entry;
}
} return entry;
}

这个方法的意思是首先从QUEUE中拿出那些准备被垃圾回收的Memory对象,然后将其从LinkedReference中unlink。 最后将新创建的对象加入到LinkedReference中。

因为Memory中的QUEUE和HEAD都是类变量,所以这个LinkedReference保存的是JVM中所有的Memory对象。

最后Memory中也提供了对应的read和write方法,但是Memory中的方法和Pointer不同,Memory中的方法多了一个boundsCheck,如下所示:

    public void read(long bOff, byte[] buf, int index, int length) {
boundsCheck(bOff, length * 1L);
super.read(bOff, buf, index, length);
} public void write(long bOff, byte[] buf, int index, int length) {
boundsCheck(bOff, length * 1L);
super.write(bOff, buf, index, length);
}

为什么会有boundsCheck呢?这是因为Memory和Pointer不同,Memory中有一个size的属性,用来存储分配的内存大小。使用boundsCheck就是来判断访问的地址是否出界,用来保证程序的安全。

总结

Pointer和Memory算是JNA中的高级功能,大家如果想要和native的alloc方法进行映射的话,就要考虑使用了。

本文已收录于 http://www.flydean.com/06-jna-memory/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

java高级用法之:JNA中的Memory和Pointer的更多相关文章

  1. java高级用法之:JNA中的Structure

    目录 简介 native中的struct Structure 特殊类型的Structure 结构体数组作为参数 结构体数组作为返回值 结构体中的结构体 结构体中的数组 结构体中的可变字段 结构体中的只 ...

  2. java高级用法之:JNA中的Function

    目录 简介 function的定义 Function的实际应用 总结 简介 在JNA中,为了和native的function进行映射,我们可以有两种mapping方式,第一种是interface ma ...

  3. java高级用法之:JNA中的回调

    目录 简介 JNA中的Callback callback的应用 callback的定义 callback的获取和应用 在多线程环境中使用callback 总结 简介 什么是callback呢?简单点说 ...

  4. java高级用法之:JNA类型映射应该注意的问题

    目录 简介 String Buffers,Memory,数组和Pointer 可变参数 总结 简介 JNA提供JAVA类型和native类型的映射关系,但是这一种映射关系只是一个大概的映射,我们在实际 ...

  5. java高级用法之:在JNA中将本地方法映射到JAVA代码中

    目录 简介 Library Mapping Function Mapping Invocation Mapping 防止VM崩溃 性能考虑 总结 简介 不管是JNI还是JNA,最终调用的都是nativ ...

  6. java高级用法之:在JNA中使用类型映射

    目录 简介 类型映射的本质 TypeMapper NativeMapped 总结 简介 JNA中有很多种映射,library的映射,函数的映射还有函数参数和返回值的映射,libary和函数的映射比较简 ...

  7. java高级用法之:调用本地方法的利器JNA

    目录 简介 JNA初探 JNA加载native lib的流程 本地方法中的结构体参数 总结 简介 JAVA是可以调用本地方法的,官方提供的调用方式叫做JNI,全称叫做java native inter ...

  8. java 高级用法整理

    一.retentionpolicy.class vs runtime区别 java5,增加了注解的功能:其中retentionpolicy注解的生命周期,提供了三种选择策略 source.class和 ...

  9. java高级用法之:无所不能的java,本地方法调用实况

    目录 简介 JDK的本地方法 自定义native方法 总结 简介 相信每个程序员都有一个成为C++大师的梦想,毕竟C++程序员处于程序员鄙视链的顶端,他可以俯视任何其他语言的程序员. 但事实情况是,无 ...

随机推荐

  1. Oracle入门基础(六)一一子查询

    SQL> --查询工资比SCOTT高的员工信息 SQL> --1. SCOTT的工资 SQL> select sal from emp where ename='SCOTT'; SA ...

  2. PACT 在微服务架构中的用途是什么?

    PACT 是一个开源工具,允许测试服务提供者和消费者之间的交互,与合同隔离, 从而提高微服务集成的可靠性. 微服务中的用法 用于在微服务中实现消费者驱动的合同. 测试微服务的消费者和提供者之间的消费者 ...

  3. 『现学现忘』Docker基础 — 36、CMD指令和ENTRYPOINT指令的区别

    目录 1.CMD指令和ENTRYPOINT指令说明 2.CMD指令只有最后一条生效的原因 3.CMD指令演示 4.ENTRYPOINT指令演示 5.总结 CMD指令和ENTRYPOINT指令作用都是指 ...

  4. sudo rosdep init 出现 ERROR: cannot download default sources list from:错误解决方法

    关于安装ROS时出现的rosdep init错误 sudo rosdep init ERROR: cannot download default sources list from: https:// ...

  5. 串联型PID,并联型PID与标准型PID简要说明

    PID广泛应用于工业生产各个环节,然而对于不同PID结构会有一些差异,导致在调参时若按照常规的经验调试,结果将会有非常大的不同. 串联型PID(Serial PID) 串联型PID的三个环节由比例,积 ...

  6. led指示灯电路图大全(八款led指示灯电路设计原理图详解)

    led指示灯电路图大全(八款led指示灯电路设计原理图详解) led指示灯电路图(一) 图1所示电路中只有两个元件,R选用1/6--1/8W碳膜电阻或金属膜电阻,阻值在1--300K之间. Ne为氖泡 ...

  7. (SSM框架)实现小程序图片上传(配小程序源码)

    阅读本文约"2分钟" 又是一个开源小组件啦! 因为刚好做到这个小功能,所以就整理了一下,针对微信小程序的图片(文件)上传! 原业务是针对用户反馈的图片上传.(没错,本次还提供小程序 ...

  8. 从八道面试题看JavaScript DOM事件机制

    As we all know,事件机制其实很简单,无非冒泡和捕获这两点,笔者不再赘述,网上相关文章一大堆,下面让我们直接看面试题 题目一到七,统一设置css .test2 { height: 50px ...

  9. linux安装sbt

    1.官网下载tgz sbt - Download (scala-sbt.org) 2.解压 tar zxvf sbt-0.13.5.tgz -C /opt/scala/ 3.建立启动sbt脚本 /*选 ...

  10. PAT B1061判断题

    题目描述: 判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分. 输入格式: 输入在第一行给出两个不超过 100 的正整数 N 和 M,分别是学生人数和判断题数量.第二 ...