SP1480题解
《四重计树法》
- 有标号无根
prufer 序列,\(n^{n-2}\)。
- 有标号有根
prufer 序列,\(n^{n-1}\)。
- 无标号有根
设 \(f[n]\) 为 \(n\) 个节点时的答案,有:
\]
人话就是 \(F(x)=x\times Euler(F(x))\)。
考虑求导列出 ODE 然后 \(O(n^2)\)。
\]
求导:
\]
\]
\]
\]
\]
\]
同理,只需要维护出 \(F(x)\) 就可以维护出 \(F'(x),\sum_{i=1}x^iF(x^i)\) 和后面那个卷积,复杂度 \(O(n^2)\)。
- 无标号无根
考虑把每颗无根树变成 以重心为根的有根树。
然后我们只需要做一遍有根的再减去不为重心的即可。
不为重心,那么一定有一个子树的大小大于了 \(\lfloor\frac{n}{2}\rfloor\)。
当 \(n\) 为奇数时,每棵树只有一个重心,减去的方案数为:
\]
当 \(n\) 为偶数时,有些树可能有两个重心。因此还需要额外减去有两个重心的树。
有两个重心就说明有一个分界的边,两边都恰好有 \(\frac{n}{2}\) 个节点。从 \(f_{\frac{n}{2}}\) 中选出两个方案即可。也就是 \(\binom{f_{\frac{n}{2}}}{2}\)。
#include<cstdio>
const int M=1005;
inline void swap(int&a,int&b){
int c=a;a=b;b=c;
}
inline int pow(int a,int b,const int&mod){
int ans(1);for(;b;b>>=1,a=1ll*a*a%mod)if(b&1)ans=1ll*ans*a%mod;return ans;
}
inline int Solve1(const int&n,const int&mod){
static int f[M],g[M],inv[M];
int ans(0);
f[1]=g[1]=inv[1]=1;
for(int i=2;i<=n;++i)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(int i=2;i<=n;++i){
for(int k=1;k<=i;++k)f[i]=(f[i]+1ll*f[k]*g[i-k])%mod;
f[i]=1ll*f[i]*inv[i-1]%mod;
for(int k=1;k<=i;++k)if(!(i%k))g[i]=(g[i]+1ll*f[k]*k)%mod;
}
ans=f[n];
for(int i=0;i<=n;++i)f[i]=g[i]=inv[i]=0;
return ans;
}
inline int Solve2(const int&n,const int&mod){
static int f[M],g[M],inv[M];
int ans(0);
f[1]=g[1]=inv[1]=1;
for(int i=2;i<=n;++i)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(int i=2;i<=n;++i){
for(int k=1;k<=i;++k)f[i]=(f[i]+1ll*f[k]*g[i-k])%mod;
f[i]=1ll*f[i]*inv[i-1]%mod;
for(int k=1;k<=i;++k)if(!(i%k))g[i]=(g[i]+1ll*f[k]*k)%mod;
}
ans=f[n];
for(int i=n/2+1;i<n;++i)ans=(ans-1ll*f[i]*f[n-i])%mod;
if(!(n%2))ans=(ans-1ll*f[n/2]*(f[n/2]-1)/2%mod)%mod;
for(int i=0;i<=n;++i)f[i]=g[i]=inv[i]=0;
return(ans+mod)%mod;
}
signed main(){
int t,n,mod;
while(~scanf("%u%u%u",&t,&n,&mod)){
if(t==1){
printf("%u\n",n==1?1:pow(n%mod,(n-2)%(mod-1),mod));
}
if(t==2){
printf("%u\n",n==1?1:pow(n%mod,(n-1)%(mod-1),mod));
}
if(t==3){
printf("%u\n",Solve1(n,mod));
}
if(t==4){
printf("%u\n",Solve2(n,mod));
}
}
}
SP1480题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- NSMutableString练习
从要求讲3个520it拼接在一起 会生成很多新的字符串 NSString *res = @""; NSString *subStr = @"520"; // 1 ...
- Java线程--Atomic原子类使用
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11871241.html Java线程--Atomic原子类使用 package concurr ...
- 警惕!Python 中少为人知的 10 个安全陷阱!
作者:Dennis Brinkrolf 译者:豌豆花下猫@Python猫 原题:10 Unknown Security Pitfalls for Python 英文:https://blog.sona ...
- 趣谈IO多路复用的本质
在<轻松搞懂5种IO模型>中,我发起了一个投票. 答案是[同步IO多路复用].目前,60%的朋友答对了.原因这里解释一下. 同步和异步的概念区别 同步:线程自己去获取结果.(一个线程) 异 ...
- Windows RestartManeger重启管理器
介绍 重启管理器API可以消除或是减少在完成安装或是更新的过程中系统需要重启的次数.软件安装或是更新过程之所以需要重启系统的原因在于一些需要更新的文件正在被运行中的程序或服务使用.而重启管理器可以 ...
- CentOS7+Rsyslog+MySQL 搭建 Rsyslog 日志服务器
文章目录 1.主机环境 2.rsyslog搭建 2.1.rsyslog-server搭建 2.2.rsyslog-client 2.2.1.测试 2.3.rsyslog日志分类 2.3.1.测试 3. ...
- gc垃圾回收算法原理
目录 三色标记法 标记-清扫(Mark And Sweep)算法 标记-清扫(Mark And Sweep)算法存在什么问题? 三色并发标记法 gc和用户逻辑如何并行操作? 进程新生成对象的时候,GC ...
- 企业没有大数据技术?选择这款BI工具
无论是网络时代的传统营销还是大数据营销,营销人员的任务之一就是找到目标客户,实现自己的营销目标.而我们说的大数据营销只不过是营销的工具发生了变化,营销的本质和目标是不变的. 就目前而言,现在的大数据 ...
- vs2022 如何让.net库文件参与程序调试【可以.net库文件的源代码中设置断点,单步跟踪】
由于.net core 是开源的.所以可以让.net库文件参与程序调试.具体vs2022配置如下 1.设置VS2022 加载程序数据文件(.pdb俗称符号文件) 1)选择工具>选项>调试& ...
- 【C++ 调试】增量链接 Incremental Linking
概述: Incremental Linking翻译成中文就是"增量链接",是一个链接的参数选项,作用就是为了提高链接速度的.什么意思呢?不选用增量链接时,每次修改或新增代码后进行链 ...