TensorFlow自定义训练函数
本文记录了在TensorFlow框架中自定义训练函数的模板并简述了使用自定义训练函数的优势与劣势。
首先需要说明的是,本文中所记录的训练函数模板参考自https://stackoverflow.com/questions/59438904/applying-callbacks-in-a-custom-training-loop-in-tensorflow-2-0中的回答以及Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow一书中第12.3.9节的内容,如有错漏,欢迎指正。
为什么和什么时候需要自定义训练函数
除非你真的需要额外的灵活性,否则应该更倾向使用fit()方法,为不是实现你自己的循环,尤其是在团队合作中。
如果你还在困惑为什么需要自定义训练函数的时候,那说明你还不需要自定义训练函数。通常只有在搭建一些结构奇特的模型时,我们才会发现model.fit()无法完全满足需求,接下来首先该尝试的方法是去看TensorFlow相关部分的源码,看看有没有认识之外的参数或方法,其次才是考虑使用自定义训练函数。毫无疑问,自定义训练函数会让代码更长、更难维护、更难懂。
但是,自定义训练函数的灵活性是fit()方法无法比拟的。比如,在自定义函数中你可以实现使用多个不同优化器的训练循环或是在多个数据集上计算验证循环。
自定义训练函数模板
模板设计的目的在于让我们通过对代码块的复用以及对关键部位的填空快速完成自定义训练函数,以使我们更专注于训练函数结构本身而非一些细枝末节的部分(如未知长度训练集的处理)并实现一些fit()方法支持的功能(如Callback类的使用)。
def train(model:keras.Model,train_batchs,epochs=1,initial_epoch=0,callbacks=None,steps_per_epoch=None,val_batchs=None):
callbacks = tf.keras.callbacks.CallbackList(
callbacks, add_history=True, model=model)
logs_dict = {}
# init optimizer, loss function and metrics
optimizer = keras.optimizers.Nadam(learning_rate=0.0005)
loss_fn = keras.losses.MeanSquaredError
train_loss_tracker = keras.metrics.Mean(name="train_loss")
val_loss_tracker = keras.metrics.Mean(name="val_loss")
# train_acc_metric = tf.keras.metrics.BinaryAccuracy(name="train_acc")
# val_acc_metric = tf.keras.metrics.BinaryAccuracy(name="val_acc")
def count(): # infinite iter
x = 0
while True:yield x;x+=1
def print_status_bar(iteration, total, metrics=None):
metrics = " - ".join(["{}:{:.4f}".format(m.name,m.result()) for m in (metrics or [])])
end = "" if iteration < total or float('inf') else "\n"
print("\r{}/{} - ".format(iteration,total) + metrics, end=end)
def train_step(x,y,loss_tracker:keras.metrics.Metric):
with tf.GradientTape() as tape:
outputs = model(x)
main_loss = tf.reduce_mean(loss_fn(y,outputs))
loss = tf.add_n([main_loss] + model.losses)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients,model.trainable_variables))
loss_tracker.update_state(loss)
return {loss_tracker.name:loss_tracker.result()}
def val_step(x,y,loss_tracker:keras.metrics.Metric):
outputs = model.predict(x,verbose=0)
main_loss = tf.reduce_mean(loss_fn(y,outputs))
loss = tf.add_n([main_loss] + model.losses)
loss_tracker.update_state(loss)
return {loss_tracker.name:loss_tracker.result()}
# init train_batchs
train_iter = iter(train_batchs)
callbacks.on_train_begin(logs=logs_dict)
for i_epoch in range(initial_epoch, epochs):
# init steps
infinite_flag = False
if steps_per_epoch is None:
infinite_flag = True
step_iter = count()
else:
step_iter = range(steps_per_epoch)
# train_loop
for i_step in step_iter:
callbacks.on_batch_begin(i_step, logs=logs_dict)
callbacks.on_train_batch_begin(i_step, logs=logs_dict)
try:
X_batch, y_batch = train_iter.next()
except StopIteration:
train_iter = iter(train_batchs)
if infinite_flag is True:
break
else:
X_batch, y_batch = train_iter.next()
train_logs_dict = train_step(x=X_batch,y=y_batch,loss_tracker=train_loss_tracker)
logs_dict.update(train_logs_dict)
print_status_bar(i_step, steps_per_epoch or i_step, [train_loss_tracker])
callbacks.on_train_batch_end(i_step, logs=logs_dict)
callbacks.on_batch_end(i_step, logs=logs_dict)
if steps_per_epoch is None:
print()
steps_per_epoch = i_step
if val_batchs is not None:
# val_loop
for i_step,(X_batch,y_batch) in enumerate(iter(val_batchs)):
callbacks.on_batch_begin(i_step, logs=logs_dict)
callbacks.on_test_batch_begin(i_step, logs=logs_dict)
val_logs_dict = val_step(x=X_batch,y=y_batch,loss_tracker=val_loss_tracker)
logs_dict.update(val_logs_dict)
callbacks.on_test_batch_end(i_step, logs=logs_dict)
callbacks.on_batch_end(i_step, logs=logs_dict)
logs_dict.update(val_logs_dict)
print_status_bar(steps_per_epoch, steps_per_epoch, [train_loss_tracker, val_loss_tracker])
callbacks.on_epoch_end(i_epoch, logs=logs_dict)
for metric in [train_loss_tracker, val_loss_tracker]:
metric.reset_states()
callbacks.on_train_end(logs=logs_dict)
# Fetch the history object we normally get from keras.fit
history_object = None
for cb in callbacks:
if isinstance(cb, tf.keras.callbacks.History):
history_object = cb
return history_object
TensorFlow自定义训练函数的更多相关文章
- 深度学习笔记 (二) 在TensorFlow上训练一个多层卷积神经网络
上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首 ...
- 在 C/C++ 中使用 TensorFlow 预训练好的模型—— 直接调用 C++ 接口实现
现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过直 ...
- 在 C/C++ 中使用 TensorFlow 预训练好的模型—— 间接调用 Python 实现
现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过 ...
- 在C#下使用TensorFlow.NET训练自己的数据集
在C#下使用TensorFlow.NET训练自己的数据集 今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分 ...
- 关于jqGrig如何写自定义格式化函数将JSON数据的字符串转换为表格各个列的值
首先介绍一下jqGrid是一个jQuery的一个表格框架,现在有一个需求就是将数据库表的数据拿出来显示出来,分别有id,name,details三个字段,其中难点就是details字段,它的数据是这样 ...
- 自定义el函数
1.1.1 自定义EL函数(EL调用Java的函数) 第一步:创建一个Java类.方法必须是静态方法. public static String sayHello(String name){ retu ...
- ORACLE 自定义聚合函数
用户可以自定义聚合函数 ODCIAggregate,定义了四个聚集函数:初始化.迭代.合并和终止. Initialization is accomplished by the ODCIAggrega ...
- SQL Server 自定义聚合函数
说明:本文依据网络转载整理而成,因为时间关系,其中原理暂时并未深入研究,只是整理备份留个记录而已. 目标:在SQL Server中自定义聚合函数,在Group BY语句中 ,不是单纯的SUM和MAX等 ...
- Matlab中如何将(自定义)函数作为参数传递给另一个函数
假如我们编写了一个积分通用程序,想使它更具有通用性,那么可以把被积函数也作为一个参数.在c/c++中,可以使用函数指针来实现上边的功能,在matlab中如何实现呢?使用函数句柄--这时类似于函数指针的 ...
随机推荐
- django-rest-framework 基础三 认证、权限和频率
django-rest-framework 基础三 认证.权限和频率 目录 django-rest-framework 基础三 认证.权限和频率 1. 认证 1.1 登录接口 1.2 认证 2. 权限 ...
- 【mq】从零开始实现 mq-13-注册鉴权 auth
前景回顾 [mq]从零开始实现 mq-01-生产者.消费者启动 [mq]从零开始实现 mq-02-如何实现生产者调用消费者? [mq]从零开始实现 mq-03-引入 broker 中间人 [mq]从零 ...
- 204. Count Primes - LeetCode
Queston 204. Count Primes Solution 题目大意:给一个数,求小于这个数的素数的个数 思路:初始化一个boolean数组,初始设置为true,先遍历将2的倍数设置为fal ...
- 设计并实现加法器类 Adder
学习内容:设计并实现加法器类 Adder 代码示例: package 实验三; import java.util.Scanner; public class Adder { private int n ...
- ElasticSearch7.3学习(二十七)----聚合概念(bucket和metric)及其示例
一.两个核心概念:bucket和metric 1.1 bucket 有如下数据 city name 北京 张三 北京 李四 天津 王五 天津 赵六 天津 王麻子 划分出来两个bucket,一个是北 ...
- kruskar重构树
只略略讲一点基本方式与思想了 构建 并查集,边按从小(大)到大(小)加入,建新点,点权为此边权,该点为两点根的父亲. 性质:(此处为最小生成树重构树) 1.lca(u,v)为u到v路径上的最大边权 2 ...
- 关于『进击的Markdown』:第五弹
关于『进击的Markdown』:第五弹 建议缩放90%食用 路漫漫其修远兮,吾将上下而求索. 我们要接受Mermaid的考验了呢 Markdown 语法真香(一如既往地安利) ( 进击吧!Mark ...
- lanedet项目调试记录
苦水时间:最近深度学习调代码真的是调的郁闷,每次调都是旧的问题没有解决,新的问题又冒出来了.新的好不容易解决了,旧的问题还是没有解决思路解决不了. 正文 最近找到一个实现了很多车道线检测算法的gith ...
- 【leetcode 206】 反转链表(简单)
链表 概念: 区别于数组,链表中的元素不是存储在内存中连续的一片区域,链表中的数据存储在每一个称之为「结点」复合区域里,在每一个结点除了存储数据以外,还保存了到下一个结点的指针(Pointer). 由 ...
- python常用标准库(os系统模块、shutil文件操作模块)
常用的标准库 系统模块 import os 系统模块用于对系统进行操作. 常用方法 os模块的常用方法有数十种之多,本文中只选出最常用的几种,其余的还有权限操作.文件的删除创建等详细资料可以参考官方文 ...