Redis系列11:内存淘汰策略
Redis系列1:深刻理解高性能Redis的本质
Redis系列2:数据持久化提高可用性
Redis系列3:高可用之主从架构
Redis系列4:高可用之Sentinel(哨兵模式)
Redis系列5:深入分析Cluster 集群模式
追求性能极致:Redis6.0的多线程模型
追求性能极致:客户端缓存带来的革命
Redis系列8:Bitmap实现亿万级数据计算
Redis系列9:Geo 类型赋能亿级地图位置计算
Redis系列10:HyperLogLog实现海量数据基数统计
1 前言
通过前面的一些文章我们知道,Redis的各项能力是基于内存实现的,相对其他的持久化存储(如MySQL、File等,数据持久化在磁盘上),性能会高很多,这也是高速缓存的一个优势。
但是问题来了,每一台机器内存终归是有限的,即使是集群模式,总的内存空间也是有限的,不能无限制的消耗。而在Redis的使用过程中,很有可能出现使用消耗超过内存实际大小的情况。比如以下几种情况:
- 未设置过期时间,Redis的Key将一直存在,直至我们明确将它删除。
- 过度跟不合理的持久化(无论是RDB快照 或是 AOF日志),都会在内存和磁盘中反复操作,需要一定的内存空间进行处理。
- 不及时清理过期缓存:清理过期缓存的方式主要有以下两种,并不是实时或者准实时,所以存在部分过期缓存依旧存在的问题。
- 主动定期删除: Redis 默认每 1 秒运行 10 次(平均每 100 ms 执行一次),每次随机抽取部分设置过期时间的 key,检查是否过期,若是过期就直接删除,直至过期的 key 比率低于 1/4。
- 被动惰性删除:缓存过期并不马上清理,当客户端的请求查询该 key 的时候,检查下 key 是否过期,如果过期,则删除该 key,重新获取。如果长时间未请求,就会有过期缓存滞留。
- 不合理不规范的使用缓存,导致内存耗尽,比如:
- 过度使用缓存,既缓存冷数据也能缓存热数据,导致内存占用过多,性能也没有得到有效提高
- 缓存数量过多或者单个缓存的Value体积过大
- 缓存过期时间设置过长或者根本不设置
2 Redis内存淘汰策略
所以,如果放任上面的那几种情况,内存终归会满的,Redis自身有一套比较完善的内存淘汰策略来专门应对这个问题,在Redis Memory占用超过我们配置的阈值的时候触发策略执行。
# redis.conf 配置最大内存空间占用为2gb,超过则执行内存淘汰策略
redis > CONFIG SET maxmemory 2gb
内存淘汰策略一共有8中,除了一种不执行淘汰策略之外,其他7种都是按照各自不一的算法对内存中现有的数据进行处理。
我们下面详细来看一下这些淘汰策略,把他们分成三大类,8小类来逐一讲解:
2.1 不淘汰策略
2.1.1 noeviction 不淘汰策略
noeviction指的是即使资源超过 maxmemory 限制的值也不会执行淘汰,只是不允许创建新的缓存了。
当Redis内存占用达到我们上面的配置的阈值(比如 5gb)之后,就不允许新增缓存key了,当有新的缓存要创建的时候,Redis 直接返回error。
2.2 仅淘汰配置过期时间key
这边仅针对配置了过期时间的数据进行淘汰
2.3.1 volatile-lru :删除最近最少使用的key
LRU(Least Recently Used)是按照最近最少使用原则来筛选数据,即最不常用的数据会被筛选出来。
如果我们的服务中有冷热数据隔离需求,这无疑是一个比较好的办法。可以将缓存的一些不经常使用的冷数据,而且数据size比较大的,筛选出来清理掉。而近期频繁被使用的key就被保留下来了。
常见的场景如下:
- 电商平台的冷热数据:比如冬季,保暖冬装、电暖设备的浏览次数就会升高,而相应的冷饮、制冷设备(冰箱、空调)的浏览次数就会降低,那么LRU策略下优先删除的就是最近一段时间未访问的缓存信息。
- 外卖平台:每天的1113点,1719点,一定是美食外卖品种的高频率访问时间段,而日用品、果蔬生鲜 大都会避开这个高峰期,这时如果内存不够用了,那么就会成为被优先删除的缓存类型。

2.3.2 volatile-lfu:删除访问次数最少的key(4.0 之后新增的策略)
LRU算法的不足之处在于,一个本身很少被访问的key,只是刚刚被访问了1次,就被认为是最近有使用的热点数据,导致短时间内不会被淘汰。
而LFU弥补了这个不足,LFU(Least Frequently Used)淘汰策略会根据key的最近访问频率进行淘汰,解决上面说的这个不足。
- LFU在LRU的基础上,为每个数据增加了一个计数器,用于统计该数据的访问次数。
- 当使用LFU策略淘汰数据时,会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出内存。
- 如果两个缓存数据的访问次数相同,LFU再比较这两个key最近一次的访问时间,把访问时间更早的缓存key淘汰出内存。
常见的应用场景:
- 对于电商平台中的冷门的商品,电子书App中热度较低、阅读量较低的书籍。这种类型的缓存会优先被淘汰掉。

2.3.3 volatile-random:随机删除过期key
针对有配置过期时间,但没有明显的冷热访问频率区别,所有的查询分布比较均衡的数据。这时候就使用 allkeys-random 策略吧,让它随机选择需要淘汰数据,也相对公平。
常见的使用场景有:
- 电商平台:常规时段的商品浏览。
- 钉钉之类工具:老师无差别抽查学生的作业。
2.3.4 volatile-ttl:删除过期时间内剩余时间最短的key
这个特性仅限于配置过期时间的场景,它是根据当前时间 跟 过期时间的差额进行由短到长的排序,较短的优先淘汰。
asc_sort(validate_time - current_time)
这种算法相对来说也不考虑缓存的访问频率和重要程度,仅按照创建的先后进行清理,越早的缓存越早清理。
所以不具备明显特征的业务场景都适用。
2.3.5 补充说明
业务场景有一些数据始终不需要删除,比如置顶新闻、视频,还有我们自己置顶的weibo。为了保障它们不被清理掉,就给这些数据不设置过期时间,这样的话 volatile类型的淘汰策略就不会影响了。但如果是 allkeys 开头的策略依旧会影响到。
2.3 淘汰所有缓存类型的key
无论是否配置了过期时间的数据均可进行淘汰。
从微服务拆分的角度说,不同的服务类型个方向的服务进行院子隔离会比较一点。这一点设计思维在缓存上依旧适用。
我们可以将不需要过期时间的缓存信息 和 需强制配置过期时间的缓存key分开。针对业务场景分别使用 volatile-xx策略 和 allkyes-xxx策略。
2.3.1 allkeys-lru:删除最近最少使用的key
保留最近有使用的key,类似volatile-lru
2.3.2 allkeys-lfu:删除访问次数最少的key
最不经常使用的,类似volatile-lfu
2.3.3 allkeys-random:随机删除过期key
无差别随机删除,volatile-random,为添加新数据腾出空间
2.4 策略命令的使用
# 获取当前内存淘汰策略
redis > config get maxmemory-policy
# 获取Redis能使用的最大内存大小:如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存。
redis > config get maxmemory
# 通过命令配置淘汰策略
redis > config set maxmemory-policy volatile-lru
# 设置Redis最大占用内存大小,这边最大占用内存大小配置为2000M
redis > config set maxmemory 2000mb
3 总结
一张图总结

Redis系列11:内存淘汰策略的更多相关文章
- Redis系列之-—内存淘汰策略(笔记)
一.Redis ---获取设置的Redis能使用的最大内存大小 []> config get maxmemory ) "maxmemory" ) " --获取当前内 ...
- 面试官:Redis 过期删除策略和内存淘汰策略有什么区别?
作者:小林coding 计算机八股文网站:https://xiaolincoding.com 大家好,我是小林. Redis 的「内存淘汰策略」和「过期删除策略」,很多小伙伴容易混淆,这两个机制虽然都 ...
- redis键的过期和内存淘汰策略
键的过期时间 设置过期时间 Redis可以为存储在数据库中的值设置过期时间,作为一个缓存数据库,这个特性是很有帮助的.我们项目中的token或其他登录信息,尤其是短信验证码都是有时间限制的. 按照传统 ...
- Redis详解(十一)------ 过期删除策略和内存淘汰策略
在介绍这篇文章之前,我们先来看如下几个问题: ①.如何设置Redis键的过期时间? ②.设置完一个键的过期时间后,到了这个时间,这个键还能获取到么?假如获取不到那这个键还占据着内存吗? ③.如何设置R ...
- Redis的过期策略和内存淘汰策略(转)
Redis的过期策略 我们都知道,Redis是key-value数据库,我们可以设置Redis中缓存的key的过期时间.Redis的过期策略就是指当Redis中缓存的key过期了,Redis如何处理. ...
- Redis的过期策略和内存淘汰策略
Redis的过期策略:通常有三种,Redis中同时使用惰性过期和定期过期两种过期策略组合. 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除.该策略可以立即清除过期的数据 ...
- redis六种内存淘汰策略学习
当客户端会发起需要更多内存的申请,Redis检查内存使用情况,如果实际使用内存已经超出maxmemory,Redis就会根据用户配置的淘汰策略选出无用的key; 当前Redis3.0版本支持的淘汰策略 ...
- Redis的内存淘汰策略
Redis占用内存大小 我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小. 1.通过配置文件配置 ...
- Redis数据结构和使用场景,redis内存淘汰策略
什么样的数据适合放入Redis? sql执行耗时特别久,且结果不频繁变动的数据,适合放入Redis. Redis是单线程的,为什么会这么快? 纯内存操作 单线程操作,避免频繁的上下文切换 采用了非阻塞 ...
- Redis内存满了的几种解决方法(内存淘汰策略与Redis集群)
1,增加内存: 2,使用内存淘汰策略. 3,Redis集群. 重点介绍下23: 第2点: 我们知道,redis设置配置文件的maxmemory参数,可以控制其最大可用内存大小(字节). 那么当所需内存 ...
随机推荐
- 常用MySQL语句(持续更新)
1. 客户端登录 在终端输入 mysql -u[用户名] -p[密码] 2. 数据库级别操作 // 创建数据库 create database [db name]; // 查看数据库列表 show d ...
- 关于指针初始化为NULL的一些问题
关于指针初始化问题,先看以下代码: #include <stdio.h>typedef struct{ char data[128]; int top;} Stack;voi ...
- 《Java笔记——基础知识点》
Java笔记--基础知识点 位运算符操作的都是整型的数据. 位运算符是直接对整数的二进制进行计算. 整数不能进行逻辑运算. 运算符优先级别由高到低分别是:() > ! > 算术 ...
- 第六章:Django 综合篇 - 18:国际化和本地化
所谓的国际化,是指使用不同语言的用户在访问同一个网站页面时能够看到符合其自身语言的文本页面. 国际化的基本原理是: 浏览器通过LANGUAGE_CODE在HTTP请求头中告诉网站后台服务器用户所需要的 ...
- Nginx负载均衡设置max_fails和fail_timeout
在Nginx的负载均衡检查模块中,对于负载均衡的节点可以配置如下可选参数: max_fails=1 fail_timeout=10s 这个是Nginx在负载均衡功能中,用于判断后端节点状态,所用到两个 ...
- gitlab备份和恢复
备份 生产环境下,备份是必需的.需要备份的文件有:配置文件和数据文件. 备份配置文件 配置文件包含密码等敏感信息,不要和数据文件放在一起. sh -c 'umask 0077; tar -cf $(d ...
- 基于MySQL的-u选项实现如何最大程度防止人为误操作MySQL数据库
在mysql命令加上选项-U后,当发出没有WHERE或LIMIT关键字的UPDATE或DELETE时,MySQL程序就会拒绝执行.那么,我们基于MySQL提供的这项设置,就可以轻松实现如何最大程度防止 ...
- (WebFlux)004、WebFilter踩坑记录
一.背景 使用SpringWebFlux的WebFilter时,由于不熟悉或一些思考疏忽,容易出现未知的异常.记录一下排查与解决方案,给大家分享一下. 二.问题 2.1 问题描述 在测试接口方法时,出 ...
- C++自学笔记 初始化列表 Initializer list
初始化p A(){ p = 0;cout<<"A::A()"<<endl;} 初始化列表 Initializer list A():p(0){ cout&l ...
- 企业MES系统与ERP信息集成要素有哪些?
关于要讲明企业MES系统与ERP信息集成要素有哪些,得先弄清楚他们之间的关系:从工厂的管理来说,ERP在上MES在下,ERP统领企业全局包括MES,为管理层服务,重心在于企业决策,ERP对企业宏观管理 ...