Solution -「Local 11145」诗意狗
0x01 前置芝士
树形结构?贪心?思维?眼睛?
好有趣。。。 link
0x02
题目大意:给你一颗有 \(n\) 个节点的树,你需要尽可能多的删掉边,使得剩下的图中有 \(k\) 个点满足互相能走到。求最后剩下的边数。
我们深度剖析出题人其实是想考树形 \(dp\) 的,可是呢,这其实就是道一眼题。
首先,我们剩下的图最优情况一定是只剩 \(k\) 个点。
对于答案,最优的情况其实就是 \(k\) 个点分成 \(\lfloor \frac k 2 \rfloor\) 堆,使得每一堆只有两个点或有一堆有三个点。这也是最理想的情况,但显然一些树无法满足。不过你会发现,这个理想情况最后剩的边为 \(\lceil \frac k 2 \rceil\)。
于是我们考虑原树可以拆分成多少个多少堆,使得每一堆的点数不大于 \(2\),记能拆分出的个数为 \(cnt\)。
如果 \(cnt >= \lfloor \frac k 2 \rfloor\),也就是说这棵树可以拆分出这么多堆,那么答案就是 \(\lceil \frac k 2 \rceil\)。
而如果 \(cnt < \lfloor \frac k 2 \rfloor\),也就是说这棵树是不支持最优解的,那么我们就运用一下贪心。首先我们需要剩余 \(k\) 个点,而因为我们原树只能拆出 \(cnt\) 堆,所以说这 \(k\) 个点中,一定有 \(cnt \times 2\) 个点可以成为理想情况。那么我们就考虑剩下 \(k - cnt \times 2\) 个点怎么办。其实我也不知道怎么办,但我知道这些点一定能通过一条边和已经处于理想情况的一堆连接起来,那么累加边即可。此时答案为 \(k - cnt \times 2 + cnt\),即 \(k - cnt\)。
把这两种情况综合一下就会得到答案:\(k - \min(\lfloor \frac k 2 \rfloor, cnt)\)。
关于 \(cnt\) 的求法,我们可以直接遍历这棵树。
对于节点 \(u\),它的子节点 \(v\),如果所有的 \(v\) 被取用过,我们就不取,并把 \(u\) 设为未被取用;如果有一个 \(v\) 没有被取用,我们就取没被取用的第一个 \(v\) 并把 \(u\) 设为被取用。可以结合代码分析。
0x03 code
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long LL;
int read() {
int x = 0, k = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + (s ^ 48);
s = getchar();
}
return x * k;
}
void write(int x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
void print(int x, char s) {
write(x);
putchar(s);
}
int Min(int x, int y) { return x < y ? x : y; }
const int MAXN = 1e5 + 5;
int son[MAXN], dp[MAXN];
vector<int> mp[MAXN];
void Add_Edge(int u, int v) {
mp[u].push_back(v);
mp[v].push_back(u);
}
int cnt = 0;
bool Tree_Dp(int u, int fa) {
bool f = 1;
for (int i = 0; i < mp[u].size(); i++) {
int v = mp[u][i];
if (v == fa)
continue;
int t = Tree_Dp(v, u);
if (f && t) {
f = 0;
cnt++;
}
}
return f;
}
int main() {
int T = read();
while (T--) {
int n = read(), k = read();
for (int i = 1; i <= n; i++) mp[i].clear();
for (int i = 1; i < n; i++) {
int u = read(), v = i + 1;
Add_Edge(u, v);
}
for (int i = 1; i <= n; i++) son[i] = mp[i].size();
cnt = 0;
Tree_Dp(1, 0);
print(k - Min(cnt, k >> 1), '\n');
}
return 0;
}
Solution -「Local 11145」诗意狗的更多相关文章
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...
- Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...
- Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...
- Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...
- Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\) 给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...
- Solution -「LOCAL」画画图
\(\mathcal{Description}\) OurTeam. 给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...
- Solution -「LOCAL」ZB 平衡树
\(\mathcal{Description}\) OurOJ. 维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...
- Solution -「LOCAL」舟游
\(\mathcal{Description}\) \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...
随机推荐
- 论文阅读 Dynamic Graph Representation Learning Via Self-Attention Networks
4 Dynamic Graph Representation Learning Via Self-Attention Networks link:https://arxiv.org/abs/1812. ...
- 老生常谈系列之Aop--Spring Aop源码解析(二)
老生常谈系列之Aop--Spring Aop源码解析(二) 前言 上一篇文章老生常谈系列之Aop--Spring Aop源码解析(一)已经介绍完Spring Aop获取advice切面增强方法的逻辑, ...
- UDP协议,多道技术,进程,同步与异步,阻塞与非阻塞
UDP协议 简介 UDP叫做用户数据报协议,是OSI七层参考模型中传输层使用的协议,他提供的是不可靠传输,既它在传输过程 中不保证数据的完整性! 端口号 UDP使用IP地址和端口号进行标识,以此将数据 ...
- Servlet——HTTP状态 405 - 方法不允许
问题描述: 使用Servlet调用doGet方法时报错: 此URL不支持Http方法GET 源代码: 解决方案: 删除super.doGet(req, resp);
- 个人冲刺(三)——体温上报app(二阶段)
冲刺任务:完成用户类.温度数据和第二页面类的编写 User.java package com.example.helloworld; class User { private String usern ...
- Fail2ban 术语
filter 过滤器,使用正则表达式定义一个过滤器,从日志中匹配到IP.端口等. action 动作,定义在指定时间段要执行的操作. jail 监禁,jail是一个filter和一个action或者多 ...
- 每天一个 HTTP 状态码 101
101 Switching Protocols 当客户端的请求具有 Upgrade HTTP 首部,表示要求服务器切换到指定协议:此时服务器端就可以向客户端响应 101 Switching Proto ...
- README.exe 是的,你看错是EXE
SmartIDE让你的README变成可执行文档,再也不用编写无用的文档,再也不必操心环境问题. 作为开发者,拿到一个新的代码库的时候一般都会先去看README文件,通过这个文件可以知道这套代码所 ...
- Python Flask项目步骤
构建flask项目步骤 步骤一:构建基础项目框架 创建manage.py文件 from flask import Flask app = Flask(__name__) ""&qu ...
- 功耗优化之Sensor功耗分析
功耗优化之Sensor功耗分析 一.Sensor功耗问题分类 二.Sensor功耗问题分析方法 SSC子系统引起系统无法进入AOSD问题分析: SSC子系统频繁唤醒AP问题分析方法 SSC子系统的GP ...