Torch的索引与形变
>>> a = torch.Tensor([[1,2],[3,4]])
>>> a
tensor([[1., 2.],
[3., 4.]])
>>> a[1] 类似python中的列表的取值
tensor([3., 4.])
>>> a[0]
tensor([1., 2.])
>>> a > 0 返回布尔值或者0,1
tensor([[True, True],
[True, True]])
>>> a = torch.Tensor([[0,2],[3,4]])
>>> a > 0
tensor([[False, True],
[ True, True]])
>>> a[a>0] 类似于列表
tensor([2., 3., 4.])
>>> torch.nonzero(a) 返回非0的坐标
tensor([[0, 1],
[1, 0],
[1, 1]])
>>> torch.full_like(a,1) 将a中的值全部为1
tensor([[1., 1.],
[1., 1.]])
>>> torch.where(a>1,torch.full_like(a,1),a) 条件判断 条件成立则为前者,条件不成立则为后者
tensor([[0., 1.],
[1., 1.]])
>>> a.clamp(1,6) 限制最小值为1,最大值为6
tensor([[1., 2.],
[3., 4.]])
Tensor的变形
>>> b = a.resize(2,2)
>>> b
tensor([[1, 2],
[3, 4]])
>>> b = a.reshape(2,2)
>>> b
tensor([[1, 2],
[3, 4]])
>>> b = a.reshape(1,4)
>>> b
tensor([[1, 2, 3, 4]])
>>> b = a.resize_(2,7)
>>> b
tensor([[ 1, 2, 3,
4, 25896191785238631, 27866512327901300,
32932988893003880],
[32088589733920884, 26740517931057249, 27866495148425318,
30962724186423412, 26740530815434867, 32651548277211241,
31525394966315103]])
>>> b = a.resize_(1,2) #a.resize_()可以直接改变Tensor的尺寸(在原地改变)如果超过原来尺寸则会重新分配内存,多出的部分置0,如果小于原来的Tensor大小则剩余的部分仍然会隐藏保留。
>>> b
tensor([[1, 2]])
#resize() reshape() view() 在括号中输入矩阵的尺寸可以直接修改 但不能超过原来的Tensor尺寸。。。
>>> a = torch.randn(2,2,3)
>>> a
tensor([[[ 1.9844, -1.1686, 0.1745],
[ 0.9595, 1.4640, -0.5703]],
[[-1.0130, -0.1706, 0.6245],
[ 0.7703, -1.0161, -0.1846]]])
>>> b = a.transpose(0,1)
>>> b
tensor([[[ 1.9844, -1.1686, 0.1745],
[-1.0130, -0.1706, 0.6245]],
[[ 0.9595, 1.4640, -0.5703],
[ 0.7703, -1.0161, -0.1846]]])
>>> a.permute(2,1,0)
tensor([[[ 1.9844, -1.0130],
[ 0.9595, 0.7703]],
[[-1.1686, -0.1706],
[ 1.4640, -1.0161]],
[[ 0.1745, 0.6245],
[-0.5703, -0.1846]]])
>>> a
tensor([[[ 1.9844, -1.1686, 0.1745],
[ 0.9595, 1.4640, -0.5703]],
[[-1.0130, -0.1706, 0.6245],
[ 0.7703, -1.0161, -0.1846]]])
>>>
squeeze()和 unsqueeze()来处理size为1的维度
expand()和 expend_as()来复制拓展size为1为指定维度大小。
##expand和repeat可以实现维度的拓展
expand拓展维度的时候,如果维度要是不想变化,就用-1代替,
而且拓张的时候只能从1扩张成M 不可从n拓张成M
>>> b.shape
torch.Size([1, 32, 1, 1])
>>> b.expand(4,-1,4,4).shape
torch.Size([4, 32, 4, 4])
repeat的使用
想重复几次就在repeat()中就重复的数不重复的话就是1
>>> b.shape
torch.Size([1, 32, 1, 1])
>>> b.repeat(1,1,4,4).shape
torch.Size([1, 32, 4, 4])
>>>
Torch的索引与形变的更多相关文章
- 常用torch代码片段合集
PyTorch常用代码段整理合集 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collections import os import shutil import tqd ...
- [转]Torch是什么?
Torch是一个广泛支持机器学习算法的科学计算框架.易于使用且高效,主要得益于一个简单的和快速的脚本语言LuaJIT,和底层的C / CUDA实现:Torch | Github 核心特征的总结:1. ...
- (原)torch中显示nn.Sequential()网络的详细情况
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6065526.html 本部分多试几次就可以弄得清每一层具体怎么访问了. step1. 网络定义如下: ...
- PyTorch官方中文文档:torch.nn
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...
- PyTorch官方中文文档:torch.Tensor
torch.Tensor torch.Tensor是一种包含单一数据类型元素的多维矩阵. Torch定义了七种CPU tensor类型和八种GPU tensor类型: Data tyoe CPU te ...
- PyTorch官方中文文档:torch
torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA ...
- pytorch中文文档-torch.nn常用函数-待添加-明天继续
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kerne ...
- Tensor索引操作
#Tensor索引操作 ''''' Tensor支持与numpy.ndarray类似的索引操作,语法上也类似 如无特殊说明,索引出来的结果与原tensor共享内存,即修改一个,另一个会跟着修改 ''' ...
- pytorch torch.Storage学习
tensor分为头信息区(Tensor)和存储区(Storage) 信息区主要保存着tensor的形状(size).步长(stride).数据类型(type)等信息,而真正的数据则保存成连续数组,存储 ...
随机推荐
- maven jar包冲突问题
之前好端端的项目没做任何改动maven依赖就报红?jar包冲突?不要慌,问题不大. idea file里面点击invalidate Caches/Restart清空项目缓存并重启,ok解决问题.
- 【面试普通人VS高手系列】CPU飙高系统反应慢怎么排查?
面试过程中,场景类的问题更容易检测出一个开发人员的基本能力. 这不,一个小伙伴去阿里面试,第一面就遇到了关于"CPU飙高系统反应慢怎么排查"的问题? 对于这个问题,我们来看看普通人 ...
- js 递归求1/2+1/4+1/6+....1/n的和,和1/1+1/3+1/5+.....+1/n的和
function fun1(n) { if (n == 2) { return 1 / 2; } if (n == 1) { ...
- Codeforces Round #703 (Div. 2)__ B. Eastern Exhibition__ 纯纯的思维
原题链接https://codeforces.com/contest/1486/problem/B 题目 解题思路 这是个思维题, 算是货仓选址的变式, 想要到达各个点距离最小,我们的目标可以化为先 ...
- events.js 源码分析
events.js 源码分析 1. 初始化 // 使用 this.ee = new EventEmitter(); // 源码 // 绑定this域,初始化 _events,_eventsCount和 ...
- 用 getElementsByTagName() 来获取,父元素指定的子元素
1. html 结构 <ul> <li>知否知否,应是等你好久11</li> <li>知否知否,应是等你好久11</li> <li&g ...
- 「BUAA OO Unit 2 HW8」第二单元总结
「BUAA OO Unit 2 HW8」第二单元总结 目录 「BUAA OO Unit 2 HW8」第二单元总结 Part 0 前言 Part 1 第五次作业 1.1 作业要求 1.2 架构设计 1. ...
- 《手把手教你》系列基础篇(九十七)-java+ selenium自动化测试-框架设计篇-Selenium方法的二次封装和页面基类(详解教程)
1.简介 上一篇宏哥介绍了如何设计支持不同浏览器测试,宏哥的方法就是通过来切换配置文件设置的浏览器名称的值,来确定启动什么浏览器进行脚本测试.宏哥将这个叫做浏览器引擎类.这个类负责获取浏览器类型和启动 ...
- Java编程小技巧(1)——方法传回两个对象
原文地址:Java编程小技巧(1)--方法传回两个对象 | Stars-One的杂货小窝 题目是个伪命题,由Java语法我们都知道,方法要么返回一个对象,要么就不返回 当有这样的情况,我们需要返回两个 ...
- logging日志模块详细,日志模块的配置字典,第三方模块的下载与使用
logging日志模块详细 简介 用Python写代码的时候,在想看的地方写个print xx 就能在控制台上显示打印信息,这样子就能知道它是什么 了,但是当我需要看大量的地方或者在一个文件中查看的时 ...