中断与异常模型图

  1. 内中断

    内中断是由 CPU 内部事件引起的中断,通常是在程序执行过程中由于 CPU 自身检测到某些异常情况而产生的。例如,当执行除法运算时除数为零,或者访问了不存在的内存地址,CPU 就会产生内中断。

    1. 硬件异常

      CPU内部产生的异常事件

      1. 故障Fault

        故障是在指令执行过程中检测到的错误情况导致的内中断,比如空指针,除0异常,缺页中断等
      2. 自陷Trap

        这是一种有意的内中断,是由软件预先设定的特殊指令或操作引起的。比如syscall,int 3这种故意设定的陷阱
      3. 终止abort

        终止是一种比较严重的内中断,通常是由于不可恢复的硬件错误或者软件严重错误导致的,比如内存硬件损坏、Cache 错误等
    2. 用户异常

      软件模拟出的异常,比如操作系统的SEH,.NET的OutOfMemoryException
  2. 外中断

    外中断是由 CPU 外部的设备或事件引起的中断。比如键盘,鼠标,主板定时器。这些外部设备通过向 CPU 发送中断请求信号来通知 CPU 需要处理某个事件。外中断是计算机系统与外部设备进行交互的重要方式,使得 CPU 能够及时响应外部设备的请求,提高系统的整体性能和响应能力。

    1. NMI(Non - Maskable Interrupt,非屏蔽中断)

      NMI 是一种特殊类型的中断,它不能被 CPU 屏蔽。与普通中断(可以通过设置中断屏蔽位来阻止 CPU 响应)不同,NMI 一旦被触发,CPU 必须立即响应并处理。这种特性使得 NMI 通常用于处理非常紧急且至关重要的事件,这些事件的优先级高于任何其他可屏蔽中断。
    2. INTR(Interrupt Request,中断请求)

      INTR 是 CPU 用于接收外部中断请求的引脚(在硬件层面)或者信号机制(在软件层面)。外部设备(如磁盘驱动器、键盘、鼠标等)通过向 CPU 的 INTR 引脚发送信号来请求 CPU 中断当前任务,为其提供服务。这是计算机系统实现设备交互和多任务处理的关键机制之一。

用户异常

C#的异常,在Windows平台下是完全围绕SEH处理框架来展开。其开销并不低,内部走了很多流程。

        static void Main(string[] args)
{
try
{
var num = Convert.ToInt32("a");
}
catch (Exception ex)
{
Debugger.Break();
Console.WriteLine(ex.Message);
} Console.ReadLine();
}

眼见为实:用户Execption的调用栈

硬件异常

硬件异常指CPU执行机器码出现异常后,由CPU通知操作系统,操作系统再通知进程触发的异常。

比如:

  1. 内核模式切换:syscall
  2. 访问违例:AccessViolationException
  3. visual studio中F9中断:int 3
        static void Main(string[] args)
{
try
{
string str = null;
var len = str.Length; Console.WriteLine(len);
}
catch (Exception ex)
{
Debugger.Break();
Console.WriteLine(ex.ToString());
} Console.ReadLine();
}

与用户异常不同的是,异常的发起点在CPU上,并且CLR为了统一处理。会先将硬件异常转换成用户异常。以此来复用后续逻辑。所以相比用户异常,硬件异常的开销更大

眼见为实:硬件Execption的调用栈

硬件异常如何与用户异常绑定?

上面说到,CLR会先将硬件异常转换成用户异常。那么在抛出异常的时候,如何正确抛出一个托管堆认识的异常呢?

以空指针异常为例

核心逻辑在ProcessCLRException中,它会判断 Thread 是否挂了异常?没有的话就会通过MapWin32FaultToCOMPlusException来转换,然后通过 pThread.SafeSetThrowables 塞入到线程里。从而实现了硬件异常在托管堆上的映射。

眼见为实

上源码

https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/excep.cpp

.NET 异常处理流程

对.NET Runtime来说,主要实现以下四个操作

  1. 捕获异常并抛出异常的位置

  2. 通过线程栈空间获取异常调用栈

    线程的栈空间维护了整个调用栈,扫描整个栈空间即可获取。

windbg的k系列命令就是参考此原理。

  1. 获取元数据的异常处理表

    一旦方法中有try-catch语句块时,JIT会将try-catch的适用范围记录下来,并整理成异常处理表(Execption Handling Table , EH Table)
C# 代码
    public class ExceptionEmample
{
public static void Example()
{
try
{
Console.WriteLine("Try outer");
try
{
Console.WriteLine("Try inner");
}
catch (Exception)
{
Console.WriteLine("Catch Expception inner");
}
}
catch (ArgumentException)
{
Console.WriteLine("Catch ArgumentException outer");
}
catch (Exception)
{
Console.WriteLine("Catch Exception outer");
}
finally
{
Console.WriteLine("Finally outer");
}
}
}
IL代码
.method public hidebysig static void  Example() cil managed
{
// Code size 96 (0x60)
.maxstack 1
IL_0000: nop
IL_0001: nop
IL_0002: ldstr "Try outer"
IL_0007: call void [System.Console]System.Console::WriteLine(string)
IL_000c: nop
IL_000d: nop
IL_000e: ldstr "Try inner"
IL_0013: call void [System.Console]System.Console::WriteLine(string)
IL_0018: nop
IL_0019: nop
IL_001a: leave.s IL_002c
IL_001c: pop
IL_001d: nop
IL_001e: ldstr "Catch Expception inner"
IL_0023: call void [System.Console]System.Console::WriteLine(string)
IL_0028: nop
IL_0029: nop
IL_002a: leave.s IL_002c
IL_002c: nop
IL_002d: leave.s IL_004f
IL_002f: pop
IL_0030: nop
IL_0031: ldstr "Catch ArgumentException outer"
IL_0036: call void [System.Console]System.Console::WriteLine(string)
IL_003b: nop
IL_003c: nop
IL_003d: leave.s IL_004f
IL_003f: pop
IL_0040: nop
IL_0041: ldstr "Catch Exception outer"
IL_0046: call void [System.Console]System.Console::WriteLine(string)
IL_004b: nop
IL_004c: nop
IL_004d: leave.s IL_004f
IL_004f: leave.s IL_005f
IL_0051: nop
IL_0052: ldstr "Finally outer"
IL_0057: call void [System.Console]System.Console::WriteLine(string)
IL_005c: nop
IL_005d: nop
IL_005e: endfinally
IL_005f: ret
IL_0060:
// Exception count 4
.try IL_000d to IL_001c catch [System.Runtime]System.Exception handler IL_001c to IL_002c
.try IL_0001 to IL_002f catch [System.Runtime]System.ArgumentException handler IL_002f to IL_003f
.try IL_0001 to IL_002f catch [System.Runtime]System.Exception handler IL_003f to IL_004f
.try IL_0001 to IL_0051 finally handler IL_0051 to IL_005f
} // end of method ExceptionEmample::Example

IL代码中最后4行就代表了方法的异常处理表。

1. IL_000d to IL_001c 之间代码发生的Exception异常由IL_001c to IL_002c 之间的代码处理
2. IL_0001 to IL_002f 之间发生的ArgumentException异常由IL_002f to IL_003f之间的代码处理
3. IL_0001 to IL_002f 之间发生的Exception异常由IL_003f to IL_004f之间的代码处理
4. IL_0001 to IL_0051 之间无论发生什么,结束后都要执行IL_0051 to IL_005f之间的代码
  1. 枚举异常处理表,调用对应的catch块与finally块

    当异常发生时,Runtime会枚举EH Table,找出并调用对应的catch块与finally块。

    核心方法为ProcessManagedCallFrame:

https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/exceptionhandling.cpp

需要注意的是,一旦CLR找到catch块,就会先执行内层所有finally块中的代码,再等到当前catch块中的代码执行完毕finally才会执行

  1. 重新抛出异常

    在执行catch,finally的过程中,如果又抛出了异常。程序会再次进入ProcessCLRException中走重复流程。

    但是调用链会消失,如果想要防止调用链丢失,需要特殊处理。
        static void Main(string[] args)
{
try
{
Test();
}
catch (Exception ex)
{
Console.WriteLine(ex);
}
} private static void Test()
{
try
{
throw new Exception("test");
}
catch (Exception ex)
{
//throw ex; //会丢失调用链,找不到真正的异常所在
//throw; //调用链完整
//ExceptionDispatchInfo.Capture(ex).Throw();//调用链更完整,显示了重新抛出异常所在的位置。
}
}

我在这里踩过大坑,使用throw ex重新抛出异常,结果丢失了异常真正的触发点,日志跟没记一样。

finally一定会执行吗?

常规情况下,finally是保证会执行的代码,但如果直接用win32函数TerminateThread杀死线程,或使用System.Environment的Failfast杀死进程,finally块不会执行。

先执行return还是先执行finally

C#代码
~~~
public static int Example2()
{
try
{
return 100+100;
}
finally
{
Console.WriteLine("finally");
}
}
~~~
IL代码
.method public hidebysig static int32  Example2() cil managed
{
// Code size 22 (0x16)
.maxstack 1
.locals init (int32 V_0)
IL_0000: nop
IL_0001: nop
IL_0002: ldc.i4.1 //将100+100的值,压入Evaluation Stack
IL_0003: stloc.0 //从Evaluation Stack出栈,保存到序号为0的本地变量
IL_0004: leave.s IL_0014 //退出代码保护区域,并跳转到指定内存区域IL_0014, 指令 leave.s 清空计算堆栈并确保执行相应的周围 finally 块。
IL_0006: nop
IL_0007: ldstr "finally"
IL_000c: call void [System.Console]System.Console::WriteLine(string)
IL_0011: nop
IL_0012: nop
IL_0013: endfinally
IL_0014: ldloc.0 //读取序号0的本地变量并存入Evaluation Stack
IL_0015: ret //从方法返回,返回值从Evaluation Stack中获取
IL_0016:
// Exception count 1
.try IL_0001 to IL_0006 finally handler IL_0006 to IL_0014
} // end of method ExceptionEmample::Example2

从IL中可以看到,当try中包含return语句时,编译器会生成一个临时变量将返回值保存起来。然后再执行finally块。最后再return 临时变量。这个过程称为局部展开(local unwind)

再举一个例子

C#代码
        public static int Test()
{
int result = 1;
try
{
return result;
}
finally
{
result = 3;
}
}
IL代码
.method public hidebysig static int32  Test() cil managed
{
// 代码大小 15 (0xf)
.maxstack 1
.locals init (int32 V_0,
int32 V_1)
IL_0000: nop
IL_0001: ldc.i4.1 //将常量1压栈
IL_0002: stloc.0 //将序号0出栈,赋值给result
IL_0003: nop
IL_0004: ldloc.0 //将当前方法序号0的变量,也就是result,压入栈中。
IL_0005: stloc.1 //将序号1的值出栈,保存到一个临时变量中。也就是return的值
IL_0006: leave.s IL_000d //跳转到对应行, 指令 leave.s 清空计算堆栈并确保执行相应的周围 finally 块。
IL_0008: nop
IL_0009: ldc.i4.3
IL_000a: stloc.0
IL_000b: nop
IL_000c: endfinally
IL_000d: ldloc.1 //将return的值 入栈
IL_000e: ret //执行return
IL_000f:
// Exception count 1
.try IL_0003 to IL_0008 finally handler IL_0008 to IL_000d
} // end of method Class1::Test

虽然在finally块中修改了result的值,但是return语句已经确定了要返回的值,finally块中的修改不会改变这个返回值。不过,如果返回的是引用类型),在finally块中修改引用类型对象的内容是会生效的

异常对性能的影响

引用别人的数据,自己就不班门弄斧了

  1. 大佬的研究

    https://www.cnblogs.com/huangxincheng/p/12866824.html
  2. <.NET Core底层入门>

总体来说,只要进入内核态。就没有开销低的。

CLS与非CLS异常(历史包袱)

在CLR的2.0版本之前,CLR只能捕捉CLS相容的异常。如果一个C#方法调用了其他编程语言写的方法,且抛出一个非CLS相容的异常。那么C#无法捕获到该异常。

在后续版本中,CLR引入了RuntimeWrappedException类。当非CLS相容的异常被抛出时,CLR会自动构造RuntimeWrappedException实例。使之与与CLS兼容

        public static void Example2()
{
try
{ }
catch(Exception)
{
//c# 2.0之前这个块只能捕捉CLS相容的异常
}
catch
{
//这个块可以捕获所有异常
}
}

.NET Core 异常(Exception)底层原理浅谈的更多相关文章

  1. Java线上问题排查神器Arthas快速上手与原理浅谈

    前言 当你兴冲冲地开始运行自己的Java项目时,你是否遇到过如下问题: 程序在稳定运行了,可是实现的功能点了没反应. 为了修复Bug而上线的新版本,上线后发现Bug依然在,却想不通哪里有问题? 想到可 ...

  2. CSRF漏洞原理浅谈

    CSRF漏洞原理浅谈 By : Mirror王宇阳 E-mail : mirrorwangyuyang@gmail.com 笔者并未深挖过CSRF,内容居多是参考<Web安全深度剖析>.& ...

  3. 如何把Java代码玩出花?JVM Sandbox入门教程与原理浅谈

    在日常业务代码开发中,我们经常接触到AOP,比如熟知的Spring AOP.我们用它来做业务切面,比如登录校验,日志记录,性能监控,全局过滤器等.但Spring AOP有一个局限性,并不是所有的类都托 ...

  4. JAVA CAS原理浅谈

    java.util.concurrent包完全建立在CAS之上的,没有CAS就不会有此包.可见CAS的重要性. CAS CAS:Compare and Swap, 翻译成比较并交换. java.uti ...

  5. CAS+SSO原理浅谈

    http://www.cnblogs.com/yonsin/archive/2009/08/29/1556423.htmlSSO 是一个非常大的主题,我对这个主题有着深深的感受,自从广州 UserGr ...

  6. php模板原理PHP模板引擎smarty模板原理浅谈

    mvc是开发中的一个伟大的思想,使得开发代码有了更加清晰的层次,让代码分为了三层各施其职.无论是对代码的编写以及后期的阅读和维护,都提供了很大的便利. 我们在php开发中,视图层view是不允许有ph ...

  7. PHP的模板引擎smarty原理浅谈

    mvc是开发中的一个伟大的思想,使得开发代码有了更加清晰的层次,让代码分为了三层各施其职.无论是对代码的编写以及后期的阅读和维护,都提供了很大的便利. 我们在php开发中,视图层view是不允许有ph ...

  8. Docker 基础底层架构浅谈

    docker学习过程中,免不了需要学习下docker的底层技术,今天我们来记录下docker的底层架构吧! 从上图我们可以看到,docker依赖于linux内核的三个基本技术:namespaces.C ...

  9. Java中的SPI原理浅谈

    在面向对象的程序设计中,模块之间交互采用接口编程,通常情况下调用方不需要知道被调用方的内部实现细节,因为一旦涉及到了具体实现,如果需要换一种实现就需要修改代码,这违反了程序设计的"开闭原则& ...

  10. JDK source 之 LinkedHashMap原理浅谈

    注:本文参考JDK1.7.0_45源码. LinkedHashMap是基于HashMap实现的数据结构,与HashMap主要的不同为每个Entry是使用双向链表实现的,并且提供了根据访问顺序进行排序的 ...

随机推荐

  1. (系列五).net8 中使用Dapper搭建底层仓储连接数据库(附源码)

    说明 该文章是属于OverallAuth2.0系列文章,每周更新一篇该系列文章(从0到1完成系统开发). 该系统文章,我会尽量说的非常详细,做到不管新手.老手都能看懂. 说明:OverallAuth2 ...

  2. go语言中变量的作用域

    Go 语言中的变量作用域规则决定了变量在程序的哪些部分是可见的和可以访问的.理解这些规则对于编写清晰.维护性高的代码非常重要.下面是一个系统性的解释. 变量的作用域类型 包级作用域: 包级作用域的变量 ...

  3. Python | os.path.join() method

    Python中的os.path.join()方法可以连接一个或多个路径组件. 此方法将各个路径组成部分,与每个非空部分路径组成部分恰好用一个目录分隔符(" /")连接起来. 如果要 ...

  4. 2024年7月中国数据库排行榜:PolarDB独领云风骚,达梦跨越新巅峰

    在7月发布的中国数据库流行度排行榜中,各大国产数据库厂商在不同领域表现势如破竹,PolarDB以800分刷新记录,并在SIGMOD 2024上获得"最佳论文奖":OceanBase ...

  5. windows下查看用户名

    net user 查看计算机所有用户名 echo %username% 查看当前用户名

  6. 45. beforeCreate和created的区别

    data数据和methods的方法是否存在,是否定义了 : beforeCreate 都是 undefiend :

  7. 关于使用plsql操作oracle的一点小技巧和几个常用的查询语句

    plsql是什么: 就是这个,专门操作oracle的一个工具,好用还免费. 创建一个测试表: create table Student( Id number not null, Name varcha ...

  8. Vite打包碎片化,如何化解?

    背景 我们在使用 Vite 进行打包时,经常会遇到这个问题:随着业务的展开,版本迭代,页面越来越多,第三方依赖也越来越多,打出来的包也越来越大.如果把页面都进行动态导入,那么凡是几个页面共用的文件都会 ...

  9. 东方通信基于 KubeSphere 的云计算落地经验

    作者:周峰 吴昌泰 公司简介 东方通信股份有限公司(以下简称"东方通信")创立于 1958 年,是一家集硬件设备.软件.服务为一体的整体解决方案提供商.公司于 1996 年成功改制 ...

  10. Java高并发之线程的实现方式,含Lamabda表达式

    Java中线程实现的方式 在 Java 中实现多线程有4种手段: 1.继承 Thread 类 2.实现 Runnable 接口 3.匿名内部类 4.Lambda表达式实现 实现 Runnable 接口 ...