前言

对一个 int 类型的非负整数进行开方下取整,最多只会开方四次大小就不会再发生变化。一个大于 \(0\) 的正整数开方下取整最后的结果比如是 \(1\),而 \(1\) 开方的结果仍然会是 \(1\);\(0\) 开方的结果仍是 \(0\)。

验证int类型整数最多可以开方的次数的demo
#include<bits/stdc++.h>
using namespace std; int main() {
int a = 2147483647;
for (int i = 0; i < 32; ++ i) {
cout << a << endl;
a = sqrt(a);
if (a == 1) {
cout << "i = " << i;
break;
}
}
return 0;
}

题目

https://loj.ac/p/6281

题解

将 \(n\) 个元素的数组 \(a\) 按块长 \(\sqrt{n}\) 进行分块处理。为每个块设置开方懒标记 \(sq[i]\),代表这个区间每个元素共同开方的次数,并且用 \(flag[i]\) 标记 \(sq[i]\) 是否发生变动。同时为每个块设置 \(cnt[i]\) 和 \(sum[i]\),分别代表这个块上开方后大小会变化的元素个数和这个块的所有元素之和。而每个数最多只会开方 \(4\) 次,不妨直接用 \(a[i][j]\) 来维护第 \(i\) 个数开方 \(j\) 次后的值,同时用 \(b[i]\) 维护当前已经开方的次数(亦即 \(a[i][j]\) 中 \(j\) 的值)。

对于区间开方操作,对于整个块的元素都进行开方操作的块判断是否仍存在开方后会变小的元素(即 \(cnt[i] > 0\) 是否成立),若存在则将懒开方标记 \(sq[i] = sq[i] + 1\),并且设置 \(flag[i] = true\) 来标记 \(sq[i]\) 已发生变动,单次操作时间复杂度 \(O(1)\),此类块至多只有 \(\sqrt{n}\) 块,最差时间复杂度 \(O(\sqrt{n})\);未符合整块的进行开方操作则进行暴力处理,并且更新其属于的块的 \(sum[i]\),单次操作时间复杂度 \(O(\sqrt{n})\),此类块至多只有 \(2\) 块,最差时间复杂度 \(O(2\sqrt{n})\)。

对于区间和操作,对于整个块的元素都需要计算到结果中的块判断这个块区间开方懒标记 \(sq[i]\) 是否发生变动(即 \(flag[i] == false\) 是否成立),若成立说明区间开方懒标记 \(sq[i]\) 未发生变动,因此将覆盖到的整块的 \(sum[i]\) 直接添加到结果中即可,单次操作时间复杂度 \(O(1)\),此类块至多只有 \(\sqrt{n}\) 块,最差时间复杂度 \(O(\sqrt{n})\);若不成立,则需要重构这个块,重新计算 \(sum[i], cnt[i]\),并且重新将 \(flag[i]\) 重新置为 \(false\),单次操作时间复杂度 \(O(\sqrt{n})\),每个块最多只会重构 \(4\) 次,最多重构 \(\sqrt{n}\) 块,最差时间复杂度 \(O(4n)\)。未符合整块的进行区间和操作则进行暴力处理单次操作时间复杂度 \(O(\sqrt{n})\),此类块至多只有 \(2\) 块,最差时间复杂度 \(O(2\sqrt{n})\)。

参考代码

#include<bits/stdc++.h>
using namespace std;
using ll = long long; char op;//操作
int l, r, c;
int n;//数列长度
int len;//块长
int a[50005][6];//数列,每个数最多开方5次就不会再变小
int b[50005];//维护数列 a 的第二维的下标
int cnt[230];//标记一个区间上开方还会变小的数的个数
int sq[230];//区间开方次数懒标记
bool flag[230];//标记一个区间开方次数懒标记增加
ll sum[230];//区间和 /*获取下标 x 所在的块的索引*/
int getPieceId(int x) {
return (x - 1) / len + 1;
} /*判断 x 是否为左边界*/
bool isLeftBoundary(int x) {
return (x - 1) % len == 0;
} /*判断 x 是否为右边界*/
bool isRightBoundary(int x) {
return x % len == 0;
} /*获取第 x 块的左边界*/
int getLeftIdx(int x) {
return (x - 1) * len + 1;
} /*获取第 x 块的右边界*/
int getRightIdx(int x) {
return min(x * len, n);
} /*初始化块*/
void initPieces() {
len = sqrt(n);
for (int i = 1, j = 1; i <= n; ++ i) {
sum[j] += a[i][0];
if (a[i][0] > 1) ++ cnt[j];
if (a[i][0]) for (int k = 1; k < 6; ++ k) a[i][k] = sqrt(a[i][k - 1]);
if (isRightBoundary(i)) ++ j;
}
} /* 计算第 x 块的区间和*/
ll calc(int x) {
if (!flag[x]) return sum[x];
cnt[x] = 0;//重新累计cnt[x]
flag[x] = false;
sum[x] = 0LL;//重新计算sum[x]
for (int i = getLeftIdx(x), j = getRightIdx(x); i <= j; ++ i) {
int bidx = min(5, b[i] + sq[x]);//维护二维的索引,最大只会到 5
sum[x] += a[i][bidx];
if (a[i][bidx] > 1) ++ cnt[x];
}
return sum[x];
} int main() {
ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
cin >> n;
for (int i = 1; i <= n; ++ i) cin >> a[i][0];
initPieces();
for (int p = 0; p < n; ++ p) {
cin >> op >> l >> r >> c;
int le = getPieceId(l), ri = getPieceId(r);
bool isLe = isLeftBoundary(l), isRi = isRightBoundary(r);
if (op == '0') {//区间开方
for (int i = isLe ? le : le + 1, j = isRi ? ri : ri - 1; i <= j; ++ i) {
if (cnt[i] > 0) {//区间上存在开方后会变小的数
sq[i] ++;
flag[i] = true;
}
}
if (!isLe) {
while (l <= r) {
int bidx1 = min(5, b[l] + sq[le]), bidx2 = min(5, bidx1 + 1);
sum[le] -= a[l][bidx1];
sum[le] += a[l][bidx2];
b[l] = b[l] + 1;
if (a[l][bidx1] > 1 && a[l][bidx2] <= 1) -- cnt[le];
if (isRightBoundary(l)) break;
++ l;
}
}
if (!isRi) {
while (l <= r) {
int bidx1 = min(5, b[r] + sq[ri]), bidx2 = min(5, bidx1 + 1);
sum[ri] -= a[r][bidx1];
sum[ri] += a[r][bidx2];
b[r] = b[r] + 1;
if (a[r][bidx1] > 1 && a[r][bidx2] <= 1) -- cnt[ri];
if (isLeftBoundary(r)) break;
-- r;
}
}
} else {//区间和
ll ans = 0LL;
for (int i = isLe ? le : le + 1, j = isRi ? ri : ri - 1; i <= j; ++ i) ans += calc(i);
if (!isLe) {
while (l <= r) {
ans += a[l][min(5, b[l] + sq[le])];
if (isRightBoundary(l)) break;
++ l;
}
}
if (!isRi) {
while (l <= r) {
ans += a[r][min(5, b[r] + sq[ri])];
if (isLeftBoundary(r)) break;
-- r;
}
}
cout << ans << '\n';
}
}
return 0;
}

【分块】LibreOJ 6281 数列分块入门5的更多相关文章

  1. LibreOJ 6281 数列分块入门5

    题目链接:https://loj.ac/problem/6281 参考博客:https://blog.csdn.net/qq_36038511/article/details/79725027 我一开 ...

  2. LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)

    题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...

  3. LOJ #6281. 数列分块入门 5-分块(区间开方、区间求和)

    #6281. 数列分块入门 5 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 5   题目描述 给出 ...

  4. LibreOJ 6277. 数列分块入门 1 题解

    题目链接:https://loj.ac/problem/6277 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,单点查值. 输入格式 第一行输入一个数字 \( ...

  5. LOJ 6281 数列分块入门 5

    简化版题意 给出一个长为n的数列,以及n个操作,操作涉及区间开方(每个数都向下取整),区间求和,保证所有数都为有符号32位正整数. N<=50000 Solution 首先我们先思考: 一个有符 ...

  6. LibreOJ 6277 数列分块入门 1(分块)

    题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...

  7. [Libre 6281] 数列分块入门 5 (分块)

    水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...

  8. LibreOJ 6278. 数列分块入门 2 题解

    题目链接:https://loj.ac/problem/6278 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的元素个数. ...

  9. LibreOJ 6285. 数列分块入门 9

    题目链接:https://loj.ac/problem/6285 其实一看到是离线,我就想用莫队算法来做,对所有询问进行分块,但是左右边界移动的时候,不会同时更新数字最多的数,只是后面线性的扫了一遍, ...

  10. LibreOJ 6282. 数列分块入门 6

    题目链接:https://loj.ac/problem/6282 参考博客:http://www.cnblogs.com/stxy-ferryman/p/8560551.html 这里如果用数组的话元 ...

随机推荐

  1. Windows 调试工具课程

    本文是我在集团内部上的课程记录而成的博客内容.在本次课程里面将和大家介绍一些在 Windows 上常用的调试工具,以及调查问题的常见套路.适合于伙伴们入门 Windows 调试 本文以下内容是采用原本 ...

  2. .NET 开源高性能 MQTT 类库

    前言 随着物联网(IoT)技术的迅猛发展,MQTT(消息队列遥测传输)协议凭借其轻量级和高效性,已成为众多物联网应用的首选通信标准. MQTTnet 作为一个高性能的 .NET 开源库,为 .NET ...

  3. Windows安装winget

    打开GitHub链接地址:https://github.com/microsoft/winget-cli/releases 选择最新版本,点进去后 找到名为后缀名为 ".msixbundle ...

  4. 在windows下安装Composer(转载)

    在windows下安装Composer Composer是 PHP 用来管理依赖(dependency)关系的工具.你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer ...

  5. Android中VSYNC代表什么

    在 Android 中,VSYNC(Vertical Synchronization)是一个垂直同步信号,用于协调显示刷新和绘图操作.VSYNC 信号的主要作用是控制屏幕刷新频率与图形渲染的同步,以确 ...

  6. 高通ADSP USB流程

    在高通平台上,ADSP(Audio Digital Signal Processor,音频数字信号处理器)可以通过 USB 接口与主机进行数据传输,以下是大致的 ADSP USB 流程: 主机发起 U ...

  7. 银河麒麟、中标麒麟学习实操资料汇总(含V4、V7、V10)

    数据库和操作系统关系十分密切,因为数据库是运行于操作系统上的一个管理数据的应用.在数据库国产化替代的浪潮之下,一批批国产操作系统也崭露头角.墨天轮社区便选取了中国操作系统排行榜上排名靠前的麒麟软件,依 ...

  8. 自定义log4j2的PatternLayout参数

    1.添加类 package com.yuanian.micro.config; import org.apache.logging.log4j.core.LogEvent; import org.ap ...

  9. 云原生爱好者周刊:使用 GitOps 来动态管理 Grafana 的数据源

    文章推荐 使用 GitOps 来动态管理 Grafana 的数据源 通过 Grafana 的 Provisioning 特性,可以在 provisioning/datasources 目录下添加多个 ...

  10. Vue最受欢迎的七大跨端框架,你都用过哪几个?

    随着移动互联网的快速发展,开发者们不仅需要为Web开发,还需要兼顾iOS.Android.小程序等多个平台.这让"跨端开发"成为了炙手可热的话题.而基于Vue的跨端框架凭借其优异的 ...