Solution -「UOJ #418」三角形
\(\mathscr{Description}\)
Link.
给定一棵含有 \(n\) 个结点的有根树, 点 \(u\) 有正权 \(w_u\). 每次操作可以:
- 在 \(u\) 上放 \(w_u\) 枚石子. 必须满足 \(u\) 的儿子全部都放了对应数量的石子.
- 回收结点 \(u\) 上的所有石子.
对于每个点, 求为了在这个点上放上石子, 至少需要准备多少枚石子.
\(n\le2\times10^5\).
\(\mathscr{Solution}\)
限制条件为 "儿子选完父亲选", 我们知道 "父亲选完儿子选" 有经典的贪心结论, 所以可以反过来考虑决策顺序.
对于点 \(u\) 单独的操作, 可以描述为二元组 \((w_u-\sum w_v,w)\), 表示本次操作需要准备 \(w\) 枚石子, 操作完成后石子的变化量为 \(w_u-\sum w_v\). 对于二元组 \((a,b),(c,d)\) 依次合并, 显然有 \((a,b)+(c,d)=(a+c,\max\{b,a+d\})\). 二元组操作顺序只需要依据操作后需准备石子的数量关系, 取数量最小的一种即可. 这是一个用于贪心的偏序关系.
正如前文所说, 如果是 "父亲选完选儿子", 可以反复找出全局最优解与父亲合并. 而这里, 我们可把整个决策倒过来. 那么 \((a,b)\rightarrow (-a,b-a)\), 在按照结论即可合并. 据此模拟出全局最有的操作策略, 在这一顺序上建立线段树, 线段树合并维护每棵子树的策略二元组之和就能求出答案. 复杂度 \(\mathcal O(n\log n)\).
\(\mathscr{Code}\)
/*+Rainybunny+*/
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i)
typedef long long LL;
typedef std::pair<LL, LL> PLL;
#define fi first
#define se second
template <typename Tp>
inline void chkmin(Tp& u, const Tp& v) { v < u && (u = v, 0); }
template <typename Tp>
inline void chkmax(Tp& u, const Tp& v) { u < v && (u = v, 0); }
template <typename Tp>
inline Tp imin(const Tp& u, const Tp& v) { return u < v ? u : v; }
template <typename Tp>
inline Tp imax(const Tp& u, const Tp& v) { return u < v ? v : u; }
const int MAXN = 2e5;
int n, fa[MAXN + 5], val[MAXN + 5], ord[MAXN + 5], root[MAXN + 5];
std::vector<int> adj[MAXN + 5], fol[MAXN + 5];
bool vis[MAXN + 5];
LL sub[MAXN + 5], ans[MAXN + 5];
PLL wgt[MAXN + 5];
struct DSU {
int fa[MAXN + 5];
inline void init() {
rep (i, 1, n) fa[i] = i;
}
inline int find(const int x) {
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
inline void unite(const int x, const int y) {
fa[find(x)] = find(y);
}
} dsu;
inline PLL operator + (const PLL& u, const PLL& v) {
return { u.fi + v.fi, imax(u.se, u.fi + v.se) };
}
struct CmpFn {
inline bool operator () (const int u, const int v) const {
LL d = (wgt[u] + wgt[v]).se - (wgt[v] + wgt[u]).se;
if (d) return d < 0;
if (wgt[u] != wgt[v]) return wgt[u] < wgt[v];
return u < v;
}
};
std::set<int, CmpFn> heap;
inline void append(const int u) {
assert(!vis[u]);
ord[u] = ++ord[0], vis[u] = true;
for (int v: fol[u]) append(v);
}
struct SegmentTree {
static const int MAXND = 4e6;
int node, ch[MAXND][2]; PLL uni[MAXND];
inline void pushup(const int u) {
uni[u] = uni[ch[u][0]] + uni[ch[u][1]];
}
inline void merge(int& u, const int v) {
if (!u || !v) return void(u |= v);
merge(ch[u][0], ch[v][0]), merge(ch[u][1], ch[v][1]);
pushup(u);
}
inline void insert(int& u, const int l, const int r,
const int x, const PLL& w) {
if (!u) u = ++node;
if (l == r) return void(uni[u] = w);
int mid = l + r >> 1;
if (x <= mid) insert(ch[u][0], l, mid, x, w);
else insert(ch[u][1], mid + 1, r, x, w);
pushup(u);
}
} sgt;
inline void solve(const int u) {
for (int v: adj[u]) solve(v), sgt.merge(root[u], root[v]);
sgt.insert(root[u], 1, n, ord[u], { sub[u] - val[u], sub[u] });
ans[u] = (PLL(val[u], val[u]) + sgt.uni[root[u]]).se;
}
int main() {
scanf("%*d %d", &n);
rep (i, 2, n) scanf("%d", &fa[i]), adj[fa[i]].push_back(i);
rep (i, 1, n) scanf("%d", &val[i]), sub[fa[i]] += val[i];
dsu.init();
rep (i, 1, n) wgt[i] = { sub[i] - val[i], sub[i] }, heap.insert(i);
rep (i, 1, n) {
int u = *heap.begin();
// fprintf(stderr, "%d\n", u);
heap.erase(heap.begin());
if (u == 1 || vis[fa[u]]) append(u);
else {
int v = dsu.find(fa[u]);
heap.erase(v);
wgt[v] = wgt[v] + wgt[u], dsu.unite(u, v);
heap.insert(v), fol[v].push_back(u);
}
}
solve(1);
rep (i, 1, n) printf("%lld%c", ans[i], i < n ? ' ' : '\n');
return 0;
}
Solution -「UOJ #418」三角形的更多相关文章
- Solution -「UOJ #46」玄学
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\) 和 \(q\) 次操作,操作内容如下: 给出 \(l,r,k,b\),声明一个修改方案,表示 ...
- Solution -「UOJ #87」mx 的仙人掌
\(\mathcal{Description}\) Link. 给出含 \(n\) 个结点 \(m\) 条边的仙人掌图.\(q\) 次询问,每次询问给出一个点集 \(S\),求 \(S\) 内 ...
- Solution -「UOJ #450」复读机
\(\mathcal{Description}\) Link. 求从 \(m\) 种颜色,每种颜色无限多的小球里选 \(n\) 个构成排列,使得每种颜色出现次数为 \(d\) 的倍数的排列方案 ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「UNR #5」「UOJ #671」诡异操作
\(\mathcal{Desciprtion}\) Link. 给定序列 \(\{a_n\}\),支持 \(q\) 次操作: 给定 \(l,r,v\),\(\forall i\in[l,r], ...
- Solution -「JOISC 2020」「UOJ #509」迷路的猫
\(\mathcal{Decription}\) Link. 这是一道通信题. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\). 程序 Anthon ...
- Solution -「UR #21」「UOJ #632」挑战最大团
\(\mathcal{Description}\) Link. 对于简单无向图 \(G=(V,E)\),定义它是"优美"的,当且仅当 \[\forall\{a,b,c,d\ ...
- Solution -「UR #2」「UOJ #32」跳蚤公路
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的带权有向图,每条边还有属性 \(s\in\{-1,0,1\}\).对于每个 \(u ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
随机推荐
- C语言数据类型和变量
目录 1.数据类型介绍 1.1字符型 1.2整形 1.3浮点型 1.4布尔类型 1.5各种数据类型长度 1.5.1sizeof操作符 1.5.2数据类型长度 1.5.3 sizeof中表达式不计算 2 ...
- 血泪史: k8s Initial timeout of 40s passed.
背景: k8s不管是 kubeadm init 和join都会报错 kubelet-start] Writing kubelet configuration to file "/var/li ...
- 基于Java+SpringBoot+Mysql实现的快递柜寄取快递系统功能实现二
一.前言介绍: 1.1 项目摘要 随着电子商务的迅猛发展和城市化进程的加快,快递业务量呈现出爆炸式增长的趋势.传统的快递寄取方式,如人工配送和定点领取,已经无法满足现代社会的快速.便捷需求.这些问题不 ...
- 低功耗4G模组:tcs3472颜色传感器示例
今天我们学习合宙低功耗4G模组Air780EP的LuatOS开发tcs3472示例,文末[阅读原文]获取最新资料1 一.简介 tcs3472颜色传感器能够读取照射到的物体的RGB三种数值,从而识别 ...
- 解决IDEA中xxxMapper.xml文件表名,字段爆红问题
我们在编写xxxMapper.xml中sql代码的时候有时会出现表名不会提示,表名爆红等情况,这个一般是没有设置IDEA的sql解析范围,下面是我遇到问题时候的解决办法 1.打开IDEA设置 2.选择 ...
- mysql8 安装后无法登录的问题
使用 apt 安装mysql 先search一下 sudo apt search mysql 得到结果 找到了这个 发现是8 那就装吧 sudo apt-get install mysql-serve ...
- 一、FreeRTOS学习笔记-基础知识
一基础知识 1.任务调度(调度器) 调度器就是使用相关的调度算法来决定当前需要执行的哪个任务 FreeRTOS三种任务调度方式: 1.抢占式调度:主要是针对优先级不同的任务,每个任务都有一个优先级,优 ...
- CF926 Div.2
C. Sasha and the Casino 赌场规则:如果下注 \(y(y > 0)\) 元,如果赢了则除了 \(y\) 元外,额外获得 \(y \times (k - 1)\) 元,否则则 ...
- java集合【10】——— LinkedList源码解析
1.LinkedList介绍 我们除了最最常用的ArrayList之外,还有LinkedList,这到底是什么东西?从LinkedList官方文档,我们可以了解到,它其实是实现了List和Queue的 ...
- 再也不用写请求HttpHelper了,HttpClient帮助你
前言 在C#7.1之后,net推出HttpClient类代替WebRequest, HttpWebRequest, ServicePoint, and WebClient ,先来看下他们在以前的作用 ...