原文链接:http://blog.sina.com.cn/s/blog_5033f3b40101flbj.html

        文章图文并茂,我就不转载了!!!


LSI-Latent Semantic Indexing.浅语义分析

针对缺点1,LSI(1990)将矩阵X进行奇异值分解,然后只取一部分作为其特征,此过程其实就相当于对X进行pca降维。将原始的向量转化到一个低维的隐含语义空间中,而保留下来的维度(根据奇异值大小决定)所对应的奇异值就对应了每个‘隐含语义’的权重,去掉的那些维度就相当于把那些不重要的‘隐含语义’的权重赋值为0.

LSI的作者Deerwester称由LSI得到的特征能够捕获一些基本的语义概念,例如同义词等。个人理解,这是由pca的性质决定的,。

LSI如其名字Latent Semantic Indexing, 旨在在词频矩阵X的基础上找出latent semantic,潜藏的语义信息。

其缺点是:不能解决多义词问题;

个人理解:这种方法就像词包模型一样,有一定的道理,但没有明确化,不像概率模型一样具体化。原文中说‘Given a generative model of text, however, it isnot clear why one should adopt the LSImethodology’,个人觉得就是说他的理论基础不够明白,所以后续推出PLSI,就是能够从数学上,从理论上具有严格意义的说明是怎么回事,到底是为什么有效,又怎么得出理论解。

模型的扩展性:如何解决长尾数据问题?

相关文章:搜索引擎算法——浅谈语义主题计算

生成式模型:LDA的更多相关文章

  1. 机器学习 —— 基础整理(三)生成式模型的非参数方法: Parzen窗估计、k近邻估计;k近邻分类器

    本文简述了以下内容: (一)生成式模型的非参数方法 (二)Parzen窗估计 (三)k近邻估计 (四)k近邻分类器(k-nearest neighbor,kNN) (一)非参数方法(Non-param ...

  2. 主题模型 LDA 入门

    主题模型 LDA 入门(附 Python 代码)   一.主题模型 在文本挖掘领域,大量的数据都是非结构化的,很难从信息中直接获取相关和期望的信息,一种文本挖掘的方法:主题模型(Topic Model ...

  3. 生成式模型之 GAN

    生成对抗网络(Generative Adversarial Networks,GANs),由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域.2016年,GANs热潮席卷AI ...

  4. AI 判别式模型和生成式模型

    判别式模型(discriminative model) 生成式模型(generative model) 对于输入x,类别标签y:产生式模型估计它们的联合概率分布P(x,y)判别式模型估计条件概率分布P ...

  5. 生成式模型 VS 判别式模型

    1 定义 1.1 生成式模型 生成式模型(Generative Model)会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得 p(yi|x),然后选取使得p(yi|x) 最大的 yi,即 ...

  6. 判别式模型 vs. 生成式模型

    1. 简介 生成式模型(generative model)会对\(x\)和\(y\)的联合分布\(p(x,y)\)进行建模,然后通过贝叶斯公式来求得\(p(y|x)\), 最后选取使得\(p(y|x) ...

  7. 产生式模型(生成式模型)与判别式模型<转载>

    转自http://dongzipnf.blog.sohu.com/189983746.html 产生式模型与判别式模型 产生式模型(Generative Model)与判别式模型(Discrimiti ...

  8. 预测学习、深度生成式模型、DcGAN、应用案例、相关paper

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  9. 生成式模型(generative) vs 判别式模型(discriminative)

    Andrew Ng, On Discriminative vs. Generative classifiers: A comparison of logistic regression and nai ...

  10. 主题模型TopicModel:主题模型LDA的应用

    http://blog.csdn.net/pipisorry/article/details/45665779 主题模型LDA的应用 拿到这些topic后继续后面的这些应用怎么做呢:除了推断出这些主题 ...

随机推荐

  1. python mysql连接池

    话不多说,直接撸代码 # coding=utf-8 from DBUtils.PooledDB import PooledDB import pymysql as mysql import trace ...

  2. esp32(M5STACK)在线体验(Ubuntu)

    我们往m5stack烧录的固件是可以在线编程的 具体使用方法可以参考   https://github.com/m5stack/M5Cloud/blob/master/README_CN.md     ...

  3. /proc/sys/vm man手册

    Manual page proc(5) line 1967 (press h for help or q to quit) /proc/sys/vm This directory contains f ...

  4. 洛谷P1208 [USACO1.3]混合牛奶 Mixing Milk【贪心+背包】

    由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业从一些奶农手中采购牛奶,并且每一位奶农为乳制品加工企业提供的价格是不同的.此 ...

  5. 将 Vue 组件库发布到 npm

    制作了一套自己的组件库,并发布到npm上,项目代码见 GitHub . 前期准备 有一个npm账号 安装了vue-cli 搭建项目 vue init webpack hg-vcomponents cd ...

  6. Beautifulsoup提取特定丁香园帖子回复

    DataWhale-Task3(Beautifulsoup爬取丁香园) 简要分析 完整代码 结果图 参考资料 简要分析 任务3:爬取丁香园论坛特定帖子,包括帖子主题,帖子介绍,回贴内容(用户名,用户头 ...

  7. base64模块 简单了解

    base64,字符串文本编码解码,方便数据进行传输 import base64 '''编码解码''' st = 'ni hao'.encode('utf8') result = base64.b64e ...

  8. MariaDB 10.x 将包含多主复制功能

    本文内容遵从CC版权协议, 可以随意转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明网址: http://www.penglixun.com/tech/database/multi_so ...

  9. Linux文字分段裁剪命令cut(转)

    Linux cut命令用于显示每行从开头算起num1到num2的文字. 语法 cut [-bn] [file] cut [-c] [file] cut [-df] [file] 使用说明: cut命令 ...

  10. 先序遍历创建二叉树,对二叉树统计叶子节点个数和统计深度(创建二叉树时#代表空树,序列不能有误)c语言

    #include "stdio.h" #include "string.h" #include "malloc.h" #define NUL ...