2013计算机视觉代码合集一:

原文链接:http://www.yuanyong.org/blog/cv/cv-code-one

切记:一定要看原文链接

原文链接; http://blog.csdn.net/zouxy09/article/details/8550952

此外,计算机视觉博客的代码库:http://www.cvchina.info/codes/

一、特征提取Feature Extraction:

二、图像分割Image Segmentation:

  • Normalized Cut [1] [Matlab
    code
    ]
  • Gerg Mori’ Superpixel code [2] [Matlab
    code
    ]
  • Efficient Graph-based Image Segmentation [3] [C++
    code
    ] [Matlab
    wrapper
    ]
  • Mean-Shift Image Segmentation [4] [EDISON
    C++ code
    ] [Matlab
    wrapper
    ]
  • OWT-UCM Hierarchical Segmentation [5] [Resources]
  • Turbepixels [6] [Matlab
    code 32bit
    ] [Matlab
    code 64bit
    ] [Updated
    code
    ]
  • Quick-Shift [7] [VLFeat]
  • SLIC Superpixels [8] [Project]
  • Segmentation by Minimum Code Length [9] [Project]
  • Biased Normalized Cut [10] [Project]
  • Segmentation Tree [11-12] [Project]
  • Entropy Rate Superpixel Segmentation [13] [Code]
  • Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]
  • Efficient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]
  • Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]
  • Random Walks for Image Segmentation[Paper][Code]
  • Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]
  • An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]
  • Geodesic Star Convexity for Interactive Image Segmentation[Project]
  • Contour Detection and Image Segmentation Resources[Project][Code]
  • Biased Normalized Cuts[Project]
  • Max-flow/min-cut[Project]
  • Chan-Vese Segmentation using Level Set[Project]
  • A Toolbox of Level Set Methods[Project]
  • Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]
  • Improved C-V active contour model[Paper][Code]
  • A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]
  • Level Set Method Research by Chunming Li[Project]
  • ClassCut for Unsupervised Class Segmentation[code]
  • SEEDS: Superpixels Extracted via Energy-Driven Sampling [Project][other]

三、目标检测Object Detection:

  • A simple object detector with boosting [Project]
  • INRIA Object Detection and Localization Toolkit [1] [Project]
  • Discriminatively Trained Deformable Part Models [2] [Project]
  • Cascade Object Detection with Deformable Part Models [3] [Project]
  • Poselet [4] [Project]
  • Implicit Shape Model [5] [Project]
  • Viola and Jones’s Face Detection [6] [Project]
  • Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]
  • Hand detection using multiple proposals[Project]
  • Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]
  • Discriminatively trained deformable part models[Project]
  • Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]
  • Image Processing On Line[Project]
  • Robust Optical Flow Estimation[Project]
  • Where's Waldo: Matching People in Images of Crowds[Project]
  • Scalable Multi-class Object Detection[Project]
  • Class-Specific Hough Forests for Object Detection[Project]
  • Deformed Lattice Detection In Real-World Images[Project]
  • Discriminatively trained deformable part models[Project]

四、显著性检测Saliency Detection:

  • Itti, Koch, and Niebur’ saliency detection [1] [Matlab
    code
    ]
  • Frequency-tuned salient region detection [2] [Project]
  • Saliency detection using maximum symmetric surround [3] [Project]
  • Attention via Information Maximization [4] [Matlab
    code
    ]
  • Context-aware saliency detection [5] [Matlab
    code
    ]
  • Graph-based visual saliency [6] [Matlab
    code
    ]
  • Saliency detection: A spectral residual approach. [7] [Matlab
    code
    ]
  • Segmenting salient objects from images and videos. [8] [Matlab
    code
    ]
  • Saliency Using Natural statistics. [9] [Matlab
    code
    ]
  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]
  • Learning to Predict Where Humans Look [11] [Project]
  • Global Contrast based Salient Region Detection [12] [Project]
  • Bayesian Saliency via Low and Mid Level Cues[Project]
  • Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]
  • Saliency Detection: A Spectral Residual Approach[Code]

五、图像分类、聚类Image Classification, Clustering

  • Pyramid Match [1] [Project]
  • Spatial Pyramid Matching [2] [Code]
  • Locality-constrained Linear Coding [3] [Project]
    [Matlab code]
  • Sparse Coding [4] [Project]
    [Matlab code]
  • Texture Classification [5] [Project]
  • Multiple Kernels for Image Classification [6] [Project]
  • Feature Combination [7] [Project]
  • SuperParsing [Code]
  • Large Scale Correlation Clustering Optimization[Matlab
    code
    ]
  • Detecting and Sketching the Common[Project]
  • Self-Tuning Spectral Clustering[Project][Code]
  • User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]
  • Filters for Texture Classification[Project]
  • Multiple Kernel Learning for Image Classification[Project]
  • SLIC Superpixels[Project]

六、抠图Image Matting

  • A Closed Form Solution to Natural Image Matting [Code]
  • Spectral Matting [Project]
  • Learning-based Matting [Code]

七、目标跟踪Object Tracking:

  • A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]
  • Object Tracking via Partial Least Squares Analysis[Paper][Code]
  • Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]
  • Online Visual Tracking with Histograms and Articulating Blocks[Project]
  • Incremental Learning for Robust Visual Tracking[Project]
  • Real-time Compressive Tracking[Project]
  • Robust Object Tracking via Sparsity-based Collaborative Model[Project]
  • Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]
  • Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]
  • Superpixel Tracking[Project]
  • Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]
  • Online Multiple Support Instance Tracking [Paper][Code]
  • Visual Tracking with Online Multiple Instance Learning[Project]
  • Object detection and recognition[Project]
  • Compressive Sensing Resources[Project]
  • Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[Project]
  • Tracking-Learning-Detection[Project][OpenTLD/C++
    Code
    ]
  • the HandVu:vision-based hand gesture interface[Project]
  • Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[Project]

八、Kinect:

九、3D相关:

  • 3D Reconstruction of a Moving Object[Paper]
    [Code]
  • Shape From Shading Using Linear Approximation[Code]
  • Combining Shape from Shading and Stereo Depth Maps[Project][Code]
  • Shape from Shading: A Survey[Paper][Code]
  • A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]
  • Multi-camera Scene Reconstruction via Graph Cuts[Paper][Code]
  • A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[Paper][Code]
  • Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[Project]
  • Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]
  • Learning 3-D Scene Structure from a Single Still Image[Project]

十、机器学习算法:

  • Matlab class for computing Approximate Nearest Nieghbor (ANN) [Matlab
    class
     providing interface toANN
    library
    ]
  • Random Sampling[code]
  • Probabilistic Latent Semantic Analysis (pLSA)[Code]
  • FASTANN and FASTCLUSTER for approximate k-means (AKM)[Project]
  • Fast Intersection / Additive Kernel SVMs[Project]
  • SVM[Code]
  • Ensemble learning[Project]
  • Deep Learning[Net]
  • Deep Learning Methods for Vision[Project]
  • Neural Network for Recognition of Handwritten Digits[Project]
  • Training a deep autoencoder or a classifier on MNIST digits[Project]
  • THE MNIST DATABASE of handwritten digits[Project]
  • Ersatz:deep neural networks in the cloud[Project]
  • Deep Learning [Project]
  • sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]
  • Weka 3: Data Mining Software in Java[Project]
  • Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凯)[Video]
  • CNN - Convolutional neural network class[Matlab
    Tool
    ]
  • Yann LeCun's Publications[Wedsite]
  • LeNet-5, convolutional neural networks[Project]
  • Training a deep autoencoder or a classifier on MNIST digits[Project]
  • Deep Learning 大牛Geoffrey E. Hinton's HomePage[Website]
  • Multiple Instance Logistic Discriminant-based Metric Learning (MildML) and Logistic Discriminant-based Metric Learning (LDML)[Code]
  • Sparse coding simulation software[Project]
  • Visual Recognition and Machine Learning Summer School[Software]

十一、目标、行为识别Object, Action Recognition:

  • Action Recognition by Dense Trajectories[Project][Code]
  • Action Recognition Using a Distributed Representation of Pose and Appearance[Project]
  • Recognition Using Regions[Paper][Code]
  • 2D Articulated Human Pose Estimation[Project]
  • Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[Paper][Code]
  • Estimating Human Pose from Occluded Images[Paper][Code]
  • Quasi-dense wide baseline matching[Project]
  • ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[Project]
  • Real Time Head Pose Estimation with Random Regression Forests[Project]
  • 2D Action Recognition Serves 3D Human Pose Estimation[Project]
  • A Hough Transform-Based Voting Framework for Action Recognition[Project]
  • Motion Interchange Patterns for Action Recognition in Unconstrained Videos[Project]
  • 2D articulated human pose estimation software[Project]
  • Learning and detecting shape models [code]
  • Progressive Search Space Reduction for Human Pose Estimation[Project]
  • Learning Non-Rigid 3D Shape from 2D Motion[Project]

十二、图像处理:

  • Distance Transforms of Sampled Functions[Project]
  • The Computer Vision Homepage[Project]
  • Efficient appearance distances between windows[code]
  • Image Exploration algorithm[code]
  • Motion Magnification 运动放大 [Project]
  • Bilateral Filtering for Gray and Color Images 双边滤波器 [Project]
  • A Fast Approximation of the Bilateral Filter using a Signal Processing Approach [Project]

十三、一些实用工具:

  • EGT: a Toolbox for Multiple View Geometry and Visual Servoing[Project]
    [Code]
  • a development kit of matlab mex functions for OpenCV library[Project]
  • Fast Artificial Neural Network Library[Project]

十四、人手及指尖检测与识别:

  • finger-detection-and-gesture-recognition [Code]
  • Hand and Finger Detection using JavaCV[Project]
  • Hand and fingers detection[Code]

十五、场景解释:

  • Nonparametric Scene Parsing via Label Transfer [Project]

十六、光流Optical flow:

  • High accuracy optical flow using a theory for warping [Project]
  • Dense Trajectories Video Description [Project]
  • SIFT Flow: Dense Correspondence across Scenes and its Applications[Project]
  • KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker [Project]
  • Tracking Cars Using Optical Flow[Project]
  • Secrets of optical flow estimation and their principles[Project]
  • implmentation of the Black and Anandan dense optical flow method[Project]
  • Optical Flow Computation[Project]
  • Beyond Pixels: Exploring New Representations and Applications for Motion Analysis[Project]
  • A Database and Evaluation Methodology for Optical Flow[Project]
  • optical flow relative[Project]
  • Robust Optical Flow Estimation [Project]
  • optical flow[Project]

十七、图像检索Image Retrieval

  • Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval [Paper][code]

十八、马尔科夫随机场Markov Random Fields:

  • Markov Random Fields for Super-Resolution [Project]
  • A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors [Project]

十九、运动检测Motion detection:

  • Moving Object Extraction, Using Models or Analysis of Regions [Project]
  • Background Subtraction: Experiments and Improvements for ViBe [Project]
  • A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications [Project]
  • changedetection.net: A new change detection benchmark dataset[Project]
  • ViBe - a powerful technique for background detection and subtraction in video sequences[Project]
  • Background Subtraction Program[Project]
  • Motion Detection Algorithms[Project]
  • Stuttgart Artificial Background Subtraction Dataset[Project]
  • Object Detection, Motion Estimation, and Tracking[Project]

资源帖:CV代码库搜集的更多相关文章

  1. Xcode之外的文档浏览工具--Dash (在iOS代码库中浏览本帖)

    链接地址:http://www.cocoachina.com/bbs/read.php?tid=273479 Xcode之外的文档浏览工具--Dash    (在iOS代码库中浏览本帖)       ...

  2. iOS流行的开源代码库

    本文介绍一些流行的iOS的开源代码库 1.AFNetworking 更新频率高的轻量级的第三方网络库,基于NSURL和NSOperation,支持iOS和OSX.https://github.com/ ...

  3. paper 15 :整理的CV代码合集

    这篇blog,原来是西弗吉利亚大学的Li xin整理的,CV代码相当的全,不知道要经过多长时间的积累才会有这么丰富的资源,在此谢谢LI Xin .我现在分享给大家,希望可以共同进步!还有,我需要说一下 ...

  4. CodeGuide 300+文档、100+代码库,一个指导程序员写代码的,Github 仓库开源啦!

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.路怎样走,让你们自己挑 B站 视频:https://www.bilibili.com/vi ...

  5. 打造smali代码库辅助分析

    打造smali代码库辅助分析 在分析Android应用程序的时候,我们往往会插入代码重打包apk来辅助我们分析的工作 一个比较取巧的方法就是先用java写好代码以及相关的调用之后, 然后直接扣出代码 ...

  6. Overview of the Oppia codebase(Oppia代码库总览)

    Oppia is built with Google App Engine. Its backend is written in Python, and its frontend is written ...

  7. 我的github代码库

    我的github代码库地址:https://github.com/gooree.Enjoy coding,enjoy sharing.

  8. 使用GitHub for Windows客户端管理京东代码库项目

    1.下载并安装 GitHub for Windows 客户端 https://windows.github.com/ 2.在京东代码库中新的代码库,可以创建私有的代码库 https://code.jd ...

  9. git代码库误操作还原记录

    先做一些前情提要: 我们项目使用git作为代码管理,同时为了操作更方便,安装了乌龟git(tortoiseGit)工具.以下几乎所有操作都是在乌龟git上进行. 我们的项目是分阶段完成的,在完成上一阶 ...

随机推荐

  1. jdk8时间格式处理

    SimpleDateFormat 是线程不安全的类,一般不要定义为 static 变量,如果定义为 static,必须加锁,或者使用 DateUtils 工具类. 正例:注意线程安全,使用 DateU ...

  2. 【2】数据采集 - urllib模块

    python2环境下关于urllib2的使用可以学习这篇文章.本文主要针对python3环境下使用urllib模块实现简单程序爬虫. 链接:https://www.jianshu.com/p/3183 ...

  3. 【Educational Codeforces Round 53 (Rated for Div. 2) C】Vasya and Robot

    [链接] 我是链接,点我呀:) [题意] [题解] 如果|x|+|y|>n 显然.从(0,0)根本就没法到(x,y) 但|x|+|y|<=n还不一定就能到达(x,y) 注意到,你每走一步路 ...

  4. poj 1734 floyd求最小环,可得到环上的每个点

    #include<stdio.h> #include<string.h> #define inf  100000000 #define N 110 #define min(a, ...

  5. C#--Task知识点

    5天玩转C#并行和多线程编程 TASK使用总结 Task是什么,字面意思是任务 表示一个异步操作.它是异步操作的首选方式.Task是FRAMEWORK4中的新特性,封装了以前的Thread,并管理Th ...

  6. vim编辑强制执行命令

    vim进入文件,输入i编辑好文件,按esc,输入冒号,再输入底下代码 :w !sudo tee %

  7. print puts p 用法

    print puts p 用法 print "a\n" puts "a" p "a\n" 输出为 a a "a\n" p ...

  8. FPGA 浮点单元设计

    浮点数在内存中的存放格式例如以下: 地址 +0 +1 +2 +3 内容 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM 这里 S 代表符号位,1是负,0是正 E 偏移1 ...

  9. python中获取当前路径【os模块】

    本机windows,文件目录F:\python\ClStudyDemo\osTest.py os.path.realpath(_file_)——返回真实路径 os.path.split()——返回路径 ...

  10. Android最佳实践之性能 - 多线程

    在单独线程执行代码 參考地址:http://developer.android.com/training/multiple-threads/define-runnable.html Runnable对 ...