机器学习: Softmax Classifier (三个隐含层)
程序实现 softmax classifier, 含有三个隐含层的情况。activation function 是 ReLU : f(x)=max(0,x)
f1=w1x+b1
h1=max(0,f1)
f2=w2h1+b2
h2=max(0,f2)
f3=w3h2+b3
h3=max(0,f3)
f4=w4h3+b4
y=ef4i∑jef4j
function Out=Softmax_Classifier_3(train_x, train_y, opts)
% activation function RELU. y=max(0, x);
% setting learning parameters
step_size=opts.step_size;
reg=opts.reg;
batchsize = opts.batchsize;
numepochs = opts.numepochs;
K=opts.class;
h1=opts.hidden_1;
h2=opts.hidden_2;
h3=opts.hidden_3;
D=size(train_x, 2);
W1=0.01*randn(D, h1);
b1=zeros(1, h1);
W2=0.01*randn(h1, h2);
b2=zeros(1, h2);
W3=0.01*randn(h2, h3);
b3=zeros(1, h3);
W4=0.01*randn(h3, K);
b4=zeros(1, K);
loss(1 : numepochs)=0;
num_examples=size(train_x, 1);
numbatches = num_examples / batchsize;
for epoch=1:numepochs
kk = randperm(num_examples);
loss(epoch)=0;
tic;
sprintf('epoch %d: \n' , epoch)
for bat=1:numbatches
batch_x = train_x(kk((bat - 1) * batchsize + 1 : bat * batchsize), :);
batch_y = train_y(kk((bat - 1) * batchsize + 1 : bat * batchsize), :);
%% forward
f1=batch_x*W1+repmat(b1, batchsize, 1);
hiddenval_1=max(0, f1);
f2=hiddenval_1*W2+repmat(b2, batchsize, 1);
hiddenval_2=max(0, f2);
f3=hiddenval_2*W3+repmat(b3, batchsize, 1);
hiddenval_3=max(0, f3);
scores=hiddenval_3*W4+repmat(b4, batchsize, 1);
%% the loss
exp_scores=exp(scores);
dd=repmat(sum(exp_scores, 2), 1, K);
probs=exp_scores./dd;
correct_logprobs=-log(sum(probs.*batch_y, 2));
data_loss=sum(correct_logprobs)/batchsize;
reg_loss=0.5*reg*sum(sum(W1.*W1))+0.5*reg*sum(sum(W2.*W2))+0.5*reg*sum(sum(W3.*W3))+0.5*reg*sum(sum(W4.*W4));
loss(epoch) =loss(epoch)+ data_loss + reg_loss;
%% back propagation
% output layer
dscores = probs-batch_y;
dscores=dscores/batchsize;
dW4=hiddenval_3'*dscores;
db4=sum(dscores);
% hidden layer 3
dhiddenval_3=dscores*W4';
mask=max(sign(hiddenval_3), 0);
df_3=dhiddenval_3.*mask;
dW3=hiddenval_2'*df_3;
db3=sum(df_3);
% hidden layer 2
dhiddenval_2=df_3*W3';
mask=max(sign(hiddenval_2), 0);
df_2=dhiddenval_2.*mask;
dW2=hiddenval_1'*df_2;
db2=sum(df_2);
% hidden layer 1
dhiddenval_1=df_2*W2';
mask=max(sign(hiddenval_1), 0);
df_1=dhiddenval_1.*mask;
dW1=batch_x'*df_1;
db1=sum(df_1);
%% update
dW4=dW4+reg*W4;
dW3=dW3+reg*W3;
dW2=dW2+reg*W2;
dW1=dW1+reg*W1;
W4=W4-step_size*dW4;
b4=b4-step_size*db4;
W3=W3-step_size*dW3;
b3=b3-step_size*db3;
W2=W2-step_size*dW2;
b2=b2-step_size*db2;
W1=W1-step_size*dW1;
b1=b1-step_size*db1;
end
loss(epoch)=loss(epoch)/numbatches;
sprintf('training loss is %f: \n', loss(epoch))
toc;
end
Out.W1=W1;
Out.W2=W2;
Out.W3=W3;
Out.W4=W4;
Out.b1=b1;
Out.b2=b2;
Out.b3=b3;
Out.b4=b4;
Out.loss=loss;
机器学习: Softmax Classifier (三个隐含层)的更多相关文章
- 机器学习:Softmax Classifier (两个隐含层)
程序实现 softmax classifier, 含有两个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...
- 机器学习 Softmax classifier (一个隐含层)
程序实现 softmax classifier, 含有一个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...
- 机器学习 Softmax classifier (无隐含层)
程序实现 Softmax classifer, 没有隐含层, f=wx+b y=efi∑jefj %% Softmax classifier function Out=Softmax_Classifi ...
- python机器学习实战(三)
python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7277205.html 前言 这篇notebook是关于机器 ...
- 基于MNIST数据集使用TensorFlow训练一个包含一个隐含层的全连接神经网络
包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.exampl ...
- 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...
- 理解dropout——本质是通过阻止特征检测器的共同作用来防止过拟合 Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了
理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/torna ...
- ubuntu之路——day13 只用python的numpy在较为底层的阶段实现单隐含层神经网络
首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 ...
- MLP神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数
神经网络 隐含层节点数的设置]如何设置神经网络隐藏层 的神经元个数 置顶 2017年10月24日 14:25:07 开心果汁 阅读数:12968 版权声明:本文为博主原创文章,未经博主允许不得转 ...
随机推荐
- Vijos——T 1164曹冲养猪
https://vijos.org/p/1164 描述 自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数 ...
- 洛谷 P2978 [USACO10JAN]下午茶时间Tea Time
P2978 [USACO10JAN]下午茶时间Tea Time 题目描述 N (1 <= N <= 1000) cows, conveniently numbered 1..N all a ...
- gerrit-申请id跟本地配置
OpenID 是一个以用户为中心的数字身份识别框架,它具有开放.分散.自由等特性. 什么是gerrit? 看 了网上的介绍,感觉所谓的gerrit就是一个基于web实现代码管理的服务器.Gerrit ...
- Solr的关键特性
1.基于标准的开放接口:Solr搜索服务器支持通过XML.JSON和HTTP查询和获取结果. 2.易管理:Solr可以通过HTML页面管理,Solr配置通过XML完成. 3.可伸缩性:能够有效地复制到 ...
- ORACLE10g R2【RAC+ASM→单实例FS】
ORACLE10g R2[RAC+ASM→单实例FS] 10g R2 RAC+ASMà单实例FS的DG,建议禁用OMF. 本演示案例所用环境: primary standby OS Hostnam ...
- Java网络编程之TCP、UDP
Java网络编程之TCP.UDP 2014-11-25 15:23 513人阅读 评论(0) 收藏 举报 分类: java基础及多线程(28) 版权声明:本文为博主原创文章,未经博主允许不得转载. ...
- MyBatis学习总结(14)——Mybatis使用技巧总结
1. 区分 #{} 和 ${}的不同应用场景 1)#{} 会生成预编译SQL,会正确的处理数据的类型,而${}仅仅是文本替换. 对于SQL: select * from student where x ...
- [Web Security] JSON Hijacking
After reading the blog, the main take away from there is: "Never send back JOSN array to the cl ...
- [D3] Debug D3 v4 with Dev Tools
Since D3 outputs standard markup, you can use familiar dev tools and inspectors to debug your visual ...
- javascript预解释中的机制
预解释是一种毫无节操的机制(自从学了预解释,从此节操是路人) in:‘num’ in window 判断num是否为window这个对象的一个属性,是的话返回true,不是返回false 1.预解释的 ...