sparkR处理Gb级数据集
spark集群搭建及介绍:敬请关注
数据集:http://pan.baidu.com/s/1sjYN7lF
总结:使用sparkR进行数据分析建模相比R大致有3-5倍的提升
查看原始数据集:通过iris数据集生成
[root@master data]#pwd
/data
[root@master data]#ls -lhsrt iris1g.txt
1.3G -rw-r--r-- 1root root 1.3G Feb 16 14:16 iris1g.txt
登录sparkR:
sparkR --masteryarn-client --num-executors 15
#1、载入数据:47671650千万数据,耗时1.60118mins
> (time1 <-Sys.time())
[1] "2016-02-1810:04:08 CST"
> data_iris <-read.table("/data/iris1g.txt", stringsAsFactors=T, sep=",",header=T, comment="", quote=NULL, encoding="UTF-8")
> Sys.time() -time1
Time difference of1.60118 mins
#使用data.table中的fread读取数据:4000千万数据,耗时1.910114
mins
library(data.table)
(time1 <-Sys.time())
data_iris <- fread("D:\\R大数据集/iris1g.txt",stringsAsFactors=T, sep=",",
header=T, encoding="UTF-8")
Sys.time() - time1
#2、数据预处理
> dim(data_iris)
[1] 47671650 5
str(data_iris)
> str(data_iris)
'data.frame': 47671650obs. of 5 variables:
$ X.Sepal.Length.: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ X.Sepal.Width. : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ X.Petal.Length.: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ X.Petal.Width. : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ X.Species. : Factor w/ 3 levels"\"setosa\"","\"versicolor\"",..: 1 1 11 1 1 1 1 1 1 ...
> names(iris)
[1]"Sepal.Length" "Sepal.Width" "Petal.Length""Petal.Width" "Species"
>names(data_iris)
[1]"X.Sepal.Length." "X.Sepal.Width." "X.Petal.Length.""X.Petal.Width."
[5]"X.Species."
>
>names(data_iris) <- names(iris)
>names(data_iris)
[1]"Sepal.Length" "Sepal.Width" "Petal.Length""Petal.Width" "Species"
#3、创建训练集和測试集数据
library(caret)
#创建训练集和測试集数据:耗时6.402254 secs
> (time1 <-Sys.time())
[1] "2016-02-1810:10:35 CST"
> ind <-base:::sample(3, nrow(data_iris), prob=c(0.3, 0.2, 0.5), replace=T)
> train <-data_iris[ind==1, ]
> test <-data_iris[ind==2, ]
> Sys.time() -time1
Time difference of6.402254 secs
#使用createDataPartition导致内存溢出
#(time1 <-Sys.time())
#index <-createDataPartition(data$Species, nrow(data), p=0.7, list=F)
#Sys.time() - time1
#train <-data[index, ]
#test <-data[-index, ]
> dim(train)
[1] 14301827 5
> dim(test)
[1] 9533737 5
memory.size()
gc()
#4、建模
#1)随机森林
#library(randomForest)
#model <-randomForest(train$X.Species.~., data=train, ntree=50, nPerm=10, mtry=3,proximity=T, importance=T)
#随机森林建模导致内存溢出
#2)使用决策时间建模:1.891634
mins
library(party)
> (time1 <-Sys.time())
[1] "2016-02-1810:12:08 CST"
> model <-ctree(Species~., data=train)
> Sys.time() -time1
Time difference of
>print(object.size(model), units="Mb")
6372.7 Mb
#str(model)
> summary(model)
Length Class Mode
1 BinaryTree S4
#5、预測
> (time1 <-Sys.time())
[1] "2016-02-1810:14:49 CST"
> pred <-predict(model, test)
> Sys.time() -time1
Time difference of36.58139 secs
#6、模型评估
table(pred,test$Species)
>mean(pred==test$Species)
[1] 1
>base:::table(pred, test$Species)
pred "setosa""versicolor" "virginica"
"setosa" 3177256 0 0
"versicolor" 0 3178471 0
"virginica" 0 0 3178010
>library(gmodels)
>CrossTable(pred, test$Species)
Cell Contents
|-------------------------|
| N |
| Chi-squarecontribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observationsin Table: 9533737
| test$Species
pred | "setosa" |"versicolor" | "virginica" | RowTotal |
-------------|--------------|--------------|--------------|--------------|
"setosa" | 3177256 | 0 | 0 | 3177256 |
| 4238091.601 | 1059271.517 | 1059117.882 | |
| 1.000 | 0.000 | 0.000 | 0.333 |
| 1.000 | 0.000 | 0.000 | |
| 0.333 | 0.000 | 0.000 | |
-------------|--------------|--------------|--------------|--------------|
"versicolor"| 0 | 3178471 | 0 | 3178471 |
| 1059271.517 | 4236471.588 | 1059522.895 | |
| 0.000 | 1.000 | 0.000 | 0.333 |
| 0.000 | 1.000 | 0.000 | |
| 0.000 | 0.333 | 0.000 | |
-------------|--------------|--------------|--------------|--------------|
"virginica" | 0 | 0 | 3178010 | 3178010 |
| 1059117.882 | 1059522.895 | 4237086.223 | |
| 0.000 | 0.000 | 1.000 | 0.333 |
| 0.000 | 0.000 | 1.000 | |
| 0.000 | 0.000 | 0.333 | |
-------------|--------------|--------------|--------------|--------------|
Column Total | 3177256 | 3178471 | 3178010 | 9533737 |
| 0.333 | 0.333 | 0.333 | |
-------------|--------------|--------------|--------------|--------------|
```
sparkR处理Gb级数据集的更多相关文章
- python编程之处理GB级的大型文件
一般我们采取分块处理,一次处理固定大小的块. def read_in_chunks(file_obj,chunk_size): """Lazy function (gen ...
- VC++获取一个GB级大文件的字节大小
常规的获得小文件(2.1GB以下)的字节大小可以使用ftell,函数 ftell 用于得到文件位置指针当前位置相对于文件首的偏移字节数.使用fseek函数后再调用函数ftell()就能非常容易地确定文 ...
- SQLite剖析之功能特性
SQLite是遵守ACID的轻型数据库引擎,它包含在一个相对较小的C库中.它是D.RichardHipp创建的公有领域项目.不像常见的客户端/服务器结构范例,SQLite引擎不是一个与程序通信的独立进 ...
- HDFS主要特性和体系结构
引言 Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点.但同时,它和其他的分布式文件系统 ...
- 数据分析≠Hadoop+NoSQL,不妨先看完善现有技术的10条捷径(分享)
Hadoop让大数据分析走向了大众化,然而它的部署仍需耗费大量的人力和物力.在直奔Hadoop之前,是否已经将现有技术推向极限?这里总结了对Hadoop投资前可以尝试的10个替代方案, ...
- 最受IT公司欢迎的50款开源软件
文章来自:云头条编译 本文介绍了多款知名的开源应用软件,科技公司可以用它们来管理自己的 IT 基础设施.开发产品. 过去十年间,许多科技公司已开始畅怀拥抱开源.许多公司使用开源工具来运行自己的 IT ...
- 数据分析≠Hadoop+NoSQL
数据分析≠Hadoop+NoSQL 目录(?)[+] Hadoop让大数据分析走向了大众化,然而它的部署仍需耗费大量的人力和物力.在直奔Hadoop之前,是否已经将现有技术推向极限 ...
- 【RAC】RAC相关基础知识
[RAC]RAC相关基础知识 1.CRS简介 从Oracle 10G开始,oracle引进一套完整的集群管理解决方案—-Cluster-Ready Services,它包括集群连通性.消息和锁. ...
- TensorFlow练习13: 制作一个简单的聊天机器人
现在很多卖货公司都使用聊天机器人充当客服人员,许多科技巨头也纷纷推出各自的聊天助手,如苹果Siri.Google Now.Amazon Alexa.微软小冰等等.前不久有一个视频比较了Google N ...
随机推荐
- Querying mergeinfo requires version 3 of the FSFS filesystem schema svn右键没菜单
svn 报错,Querying mergeinfo requires version 3 of the FSFS filesystem schema 经过查询,是svn客户端和服务端版本不一致造成的. ...
- matlab2017a doc 关联注册码
在 matlab 2017a 的命令行界面,输入doc **查看相关函数的帮助文档时,必须要关联注册码才可使用. 这种显然是在网络连接状况下给出的提示,也即主机处在网络连接状态,试图默认查找的网络中的 ...
- 详细图解mongodb下载、安装、配置与使用
记得在管理员模式下运行CMD,否则服务将启动失败 转载:http://blog.csdn.net/boby16/article/details/51221474 详细图解,记录 win7 64 安装m ...
- POJ 3671 DP or 乱搞
思路: 1.DP f[i][j]:前i个数 最后一个数是j的最小花费 f[i][j]=min(f[i][j],f[i-1][k]+(a[i]!=j));1<=k<=j 这种做法比较有普遍性 ...
- js动态创建 select选择框
document.body.onclick = function(){ if(document.getElementById('vselect') === null){ document.body.i ...
- 【Git 四】一款不错的 Git 客户端
平常做开发使用 git bash 进行代码提交,一直没有使用过 git 相关的客户端. 直到有次同一分支下两个日志进行代码比较时,bash 返回的结果可视化理解起来比较差. 如果更改的部分比较多,问题 ...
- CMSIS-RTOS功能概述
以下列表简要概述了所有CMSIS-RTOS功能.标有$的函数是可选的.特定的CMSIS-RTOS实现可能无法提供所有功能,但osFeatureXXXX定义明确指出了这一点. 注意 RTX实现不支持的功 ...
- zookeeper_相关命令 以及 API
(区分大小写) 启动ZooKeeper服务 进入主目录下的 /bin 文件夹. zkServer.sh start. 需要每个节点运行启动命令 客户端启动 zkCli ...
- MYSQL 更新时间自己主动同步与创建时间默认值共存问题
本文作者:苏生米沿 本文地址:http://blog.csdn.net/sushengmiyan/article/details/50326259 在使用SQL的时候,希望在更新数据的时候自己主动填充 ...
- mysql查询今天,昨天,近7天,近30天,本月,上一月数据
近期项目中用到了查询当月数据记录的功能,最初的想法是在逻辑业务里构造好时间段进行查询,当写sql语句时感觉挺麻烦.所以就到网上搜索了一下,看看是不是能有简单的方法.果然.网络资源非常强大.以下结合我的 ...