求 $F(x)=Q(x)\times G(x)+R(x)$  中的 $Q(x),R(x)$
 
$F(\frac{1}{x})=Q(\frac{1}{x})\times G(\frac{1}{x}) + R(\frac{1}{x})$
 
$x^{n}F(\frac{1}{x})=x^{n-m}Q(\frac{1}{x})x^{m}G(\frac{1}{x})+x^{n-m+1}x^{m-1}R(\frac{1}{x})$
 
带入 $\frac{1}{x}$,再乘以 $x^{n}$ 其实就是将系数翻转了
 
令 $F_{R}$ 表示将 $F$ 翻转
 
$F_{R}(x)=Q_{R}(x)G_{R}(x)+x^{n-m+1}R_{R}(x)$
 
$F_{R}(x)\equiv Q_{R}(x)G_{R}(x)+x^{n-m+1}R_{R}(x)($mod $x^{n-m+1})$
 
$F_{R}(x)\equiv Q_{R}(x)\times G_{R}(x)$ (mod $x^{n-m+1}$) 
 
$Q_{R}(x)\equiv F_{R}(x)\times G_{R}^{-1}(x)$(mod $x^{n-m+1}$) 
 
这里一定要注意,对 $G_{R}$ 求逆时模的是 $x^{n-m+1}$,所以要先将 $G_{R}$ 的长度定为 $n-m+1$
$R(x)=F(x)-G(x)\times Q(x)$   
// luogu-judger-enable-o2
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <vector>
#define setIO(s) freopen(s".in","r",stdin)
typedef long long ll;
const int maxn=2100005;
const ll mod=998244353;
using namespace std;
inline ll qpow(ll base,ll k) {
ll tmp=1;
for(;k;k>>=1,base=base*base%mod)if(k&1) tmp=tmp*base%mod;
return tmp;
}
inline ll inv(ll a) { return qpow(a, mod-2); }
inline void NTT(ll *a,int len,int flag) {
for(int i=0,k=0;i<len;++i) {
if(i>k) swap(a[i],a[k]);
for(int j=len>>1;(k^=j)<j;j>>=1);
}
for(int mid=1;mid<len;mid<<=1) {
ll wn=qpow(3, (mod-1)/(mid<<1)),x,y;
if(flag==-1) wn=qpow(wn,mod-2);
for(int i=0;i<len;i+=(mid<<1)) {
ll w=1;
for(int j=0;j<mid;++j) {
x=a[i+j],y=w*a[i+j+mid]%mod;
a[i+j]=(x+y)%mod, a[i+j+mid]=(x-y+mod)%mod;
w=w*wn%mod;
}
}
}
if(flag==-1) {
int re=qpow(len,mod-2);
for(int i=0;i<len;++i) a[i]=a[i]*re%mod;
}
}
ll A[maxn],B[maxn];
struct poly {
vector<ll>a;
int len;
poly(){}
inline void clear() { len=0; a.clear(); }
inline void rev() {reverse(a.begin(), a.end()); }
inline void push(int x) { a.push_back(x),++len; }
inline void resize(int x) { len=x; a.resize(x); }
void getinv(poly &b,int n) {
if(n==1) { b.clear(); b.push(inv(a[0])); return; }
getinv(b,n>>1);
int t=n<<1,lim=min(len,n);
for(int i=0;i<lim;++i) A[i]=a[i];
for(int i=lim;i<t;++i) A[i]=0;
for(int i=0;i<b.len;++i) B[i]=b.a[i];
for(int i=b.len;i<t;++i) B[i]=0;
NTT(A,t,1),NTT(B,t,1);
for(int i=0;i<t;++i) A[i]=(2-A[i]*B[i]%mod+mod)*B[i]%mod;
NTT(A,t,-1);
b.clear();
for(int i=0;i<n;++i) b.push(A[i]);
}
poly Inv() {
int n=1;
while(n<=len)n<<=1;
poly b;
b.clear(), getinv(b,n);
return b;
}
poly operator * (const poly &b) const {
int n=1;
while(n<=len+b.len) n<<=1;
for(int i=0;i<len;++i) A[i]=a[i];
for(int i=len;i<n;++i) A[i]=0;
for(int i=0;i<b.len;++i) B[i]=b.a[i];
for(int i=b.len;i<n;++i) B[i]=0;
NTT(A,n,1), NTT(B,n,1);
for(int i=0;i<n;++i) A[i]=A[i]*B[i]%mod;
NTT(A,n,-1);
poly c;
c.clear();
for(int i=0;i<len+b.len-1;++i) c.push(A[i]);
return c;
}
poly operator + (const poly &b) const {
poly c;
c.clear();
for(int i=0;i<len;++i) c.push(a[i]);
for(int i=0;i<b.len;++i) {
if(i<len) c.a[i]=(c.a[i]+b.a[i])%mod;
else c.push(b.a[i]);
}
return c;
}
poly operator - (const poly &b) const {
poly c;
c.clear();
for(int i=0;i<len;++i) c.push(a[i]);
for(int i=0;i<b.len;++i) {
if(i<len) c.a[i]=(c.a[i]-b.a[i]+mod)%mod;
else c.push((mod-b.a[i])%mod);
}
return c;
}
friend poly operator / (poly f,poly g) {
poly Q;
int l=f.len-g.len+1;
f.rev(), g.rev(), g.resize(l), f.resize(l);
g=g.Inv(), Q=f*g, Q.resize(l),Q.rev();
return Q;
}
friend poly operator % (poly f,poly g) {
poly u=f-(f/g)*g;
u.resize(g.len-1);
return u;
}
}po[4];
inline void inv() {
int n,x;
scanf("%d",&n), po[0].clear();
for(int i=0;i<n;++i) scanf("%d",&x), po[0].push(x);
po[1]=po[0].Inv();
for(int i=0;i<po[1].len;++i) printf("%lld ",po[1].a[i]);
}
inline void mult() {
int n,m,x;
scanf("%d%d",&n,&m);
for(int i=0;i<=n;++i) scanf("%d",&x), po[0].push(x);
for(int i=0;i<=m;++i) scanf("%d",&x), po[1].push(x);
po[1]=po[0]*po[1];
for(int i=0;i<po[1].len;++i) printf("%lld ",po[1].a[i]);
}
inline void divide() {
int n,m,x;
scanf("%d%d",&n,&m);
for(int i=0;i<=n;++i) scanf("%d",&x), po[0].push(x);
for(int i=0;i<=m;++i) scanf("%d",&x), po[1].push(x);
po[2]=po[0]/po[1];
for(int i=0;i<po[2].len;++i) printf("%lld ",po[2].a[i]);
printf("\n");
po[2]=po[0]%po[1];
for(int i=0;i<po[2].len;++i) printf("%lld ",po[2].a[i]);
}
int main() {
// setIO("input");
divide();
return 0;
}

  

luoguP4512 【模板】多项式除法 NTT+多项式求逆+多项式除法的更多相关文章

  1. FFT模板 生成函数 原根 多项式求逆 多项式开根

    FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...

  2. BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

    生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...

  3. 牛顿迭代,多项式求逆,除法,开方,exp,ln,求幂

    牛顿迭代 若 \[G(F_0(x))\equiv 0(mod\ x^{2^t})\] 牛顿迭代 \[F(x)\equiv F_0(x)-\frac{G(F_0(x))}{G'(F_0(x))}(mod ...

  4. [模板]多项式全家桶小记(求逆,开根,ln,exp)

    前言 这里的全家桶目前只包括了\(ln,exp,sqrt\).还有一些类似于带余数模,快速幂之类用的比较少的有时间再更,\(NTT\)这种前置知识这里不多说. 还有一些基本的导数和微积分内容要了解,建 ...

  5. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

  6. 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln

    题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...

  7. 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)

    传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...

  8. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

  9. bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...

随机推荐

  1. python与图灵机器人交互(ITCHAT版本)

    #!/usr/bin/env python#-*- coding:utf-8 -*- @Author : wujf @Time:2018/9/5 17:42import requestsimport ...

  2. jQuery中cookie使用方法

    <script type="text/javascript"> $(function () { var content=$.cookie('text');  //得到c ...

  3. 数据分析例子-------CTR1

    1.CTR: (1)几个概念: impression(展示):用户看到该广告的次数.也就是一个广告被显示了多少次,它就计数多少.比如:打开网站的一个页面,网站上的所有广告就被显示了一次,每个广告增加1 ...

  4. windows 查看端口号被占用

    1.netstat  -ano 2.tasklist | findstr xxx 3.进程管理杀掉

  5. EhCache缓存页面、局部页面和对象缓存

    页面缓存:SimplePageCachingFilter web.xml <!-- 页面缓存配置,配合ehcache.xml中name为“SimplePageCachingFilter”(默认值 ...

  6. Python Study (06)内存管理GC

    对象在内存的存储,我们可以求助于Python的内置函数id().它用于返回对象的身份(identity).其实,这里所谓的身份,就是该对象的内存地址. a = 1 print(id(a)) #1124 ...

  7. POJ 2184

    简单的01背包,把S看体积,把F看价值,把它们变正数处理就可以了.在处理负数时,因为减一个负数相当于加一个,所以要从前往后. #include <iostream> #include &l ...

  8. POJ 1811

    使用Pollard_rho算法就可以过了 #include <iostream> #include <cstdio> #include <algorithm> #i ...

  9. memcached—向memcached中保存Java实体需注意的问题

    今天以代码实例的形式总结一下向memcached中保存Java实体需注意的问题: memcached工具类代码: package com.ghj.packageoftool; import java. ...

  10. Django学习笔记(一)——安装,创建项目,配置

    疯狂的暑假学习之 Django学习笔记(一) 教材  书<The Django Book> 视频:csvt Django视频 1.创建项目 django‐admin.py startpro ...