题目大意:给你一个序列(n<=35000),最多分不大于m块(m<=50),求每个块内不同元素的数量之和的最大值

考试的时候第一眼建图,没建出来,第二眼贪心 ,被自己hack掉了,又随手写了个dp方程,感觉可以用splay维护,发现有区间操作并可取,又发现这个方程只能用线段树维护,然后只剩40min了我没调完,而且线段树打错了......

定义f[i][j]表示以第i个数为这个块的结尾,已经分了j块的答案的最大值

很明显,sum表示不同元素数量

对于每个元素,记录一个表示数 i 上一次出现的位置,那么遍历到i的时候,能更新sum的位置只有到i-1,线段树维护区间修改!

而最大,线段树维护区间最大值!

算好空间,建立M颗线段树即可

 #include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define ull unsigned long long
#define il inline
#define mod 905229641
#define N 35100
#define M 52
#define il inline
using namespace std;
//re
int n,m;
int a[N],lst[N];
int f[N][M];
struct Seg{
int ma[N<<],tag[N<<];
il void pushup(int rt){ma[rt]=max(ma[rt<<],ma[rt<<|]);}
il void pushdown(int rt){
if(tag[rt])
ma[rt<<]+=tag[rt],ma[rt<<|]+=tag[rt],
tag[rt<<]+=tag[rt],tag[rt<<|]+=tag[rt],tag[rt]=;}
void update(int L,int R,int l,int r,int rt,int w)
{
if(L>R) return;
if(L<=l&&r<=R){ma[rt]+=w;tag[rt]+=w;return;}
pushdown(rt);
int mid=(l+r)>>;
if(L<=mid) update(L,R,l,mid,rt<<,w);
if(R>mid) update(L,R,mid+,r,rt<<|,w);
pushup(rt);
}
int query(int L,int R,int l,int r,int rt)
{
if(L>R) return ;
if(L<=l&&r<=R) {return ma[rt];}
pushdown(rt);
int mid=(l+r)>>,ans=;
if(L<=mid) ans=max(query(L,R,l,mid,rt<<),ans);
if(R>mid) ans=max(query(L,R,mid+,r,rt<<|),ans);
pushup(rt);
return ans;
}
}s[M];
int main()
{
freopen("handsome.in","r",stdin);
freopen("handsome.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
s[j-].update(lst[a[i]],i-,,n,,),
f[i][j]=s[j-].query(,i-,,n,),
s[j].update(i,i,,n,,f[i][j]);
lst[a[i]]=i;
}
int ans=;
for(int i=;i<=m;i++)
ans=max(ans,f[n][i]);
printf("%d\n",ans);
return ;
}

CF833B The Bakery (线段树+DP)的更多相关文章

  1. CF833B The Bakery 线段树,DP

    CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...

  2. codeforces#426(div1) B - The Bakery (线段树 + dp)

    B. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

  3. Codeforces.833B.The Bakery(线段树 DP)

    题目链接 \(Description\) 有n个数,将其分为k段,每段的值为这一段的总共数字种类,问最大总值是多少 \(Solution\) DP,用\(f[i][j]\)表示当前在i 分成了j份(第 ...

  4. Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)

    [题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...

  5. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  6. Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)

    B. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  7. CodeForces 834D The Bakery(线段树优化DP)

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  8. Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)

     The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input ...

  9. Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP

    D. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

随机推荐

  1. IOS与h5交互记录

    博主之前做过移动端app嵌入网页,与Android和IOS有交互,一直没有时间分享过程.这里不多说Android交互啦-很简单,详细了解IOS与h5的交互吧. IOS不同语法和h5的交互所建立的JSB ...

  2. Spring MVC 的概念1

    ---恢复内容开始--- SpringMVC是一个采用模型----视图------控制器(MVC)的WEb框架建立在中央前端控制器的 Servlet(DispatcherServlet),他负责发送每 ...

  3. 基于Tags的简单内容推荐的实现

    原来为了简单方便,自己小网站上的文章页的相关内容推荐就是从数据库里随机抽取数据来填充一个列表,所以一点相关性都没有,更本没有办法引导用户去访问推荐内容. 算法选择 如何能做到相似内容的推荐呢,碍于小网 ...

  4. python基础:局部变量--全局变量的使用

    局部变量: 使用原则:仅在本函数内部使用的变量,其他函数无法使用本函数的变量 代码: def function1(): a = 2 #定义一个局部变量 print(a) def function2() ...

  5. 这个过人真是NB

  6. 数据库-mongodb-索引

    1.索引提高查询速度,降低写入速度,权衡常用的查询字段,不必在太多列上建立索引 2.在mongodb中,索引可以按字段升序.降序来创建,便于排序 3.默认是使用btree 来组织索引文件,2.4版以后 ...

  7. [Beginning SharePoint Designer 2010]Chapter 3 分析SharePoint页面

    本章概要: 1.SharePoint中主要页面类型 2.SharePoint如何组织页面 3.如何编辑母板页 4.SharePoint母板页中的主要内容占位符

  8. JS 推断URL中是否含有 http:// 假设没有则自己主动为URL加上

    url = url.substr(0,7).toLowerCase() == "http://" ? url : "http://" + url; 记性不大好. ...

  9. Bridge模式

    Bridge模式 Bridge模式 在面向对象的开发过程中,要做到2点:1.高内聚(cohesion).2.松耦合(coupling).可是在实际开发过程中难以把握,比如会遇到这种问题: 1)客户给了 ...

  10. hadoop分布式架构和设计

    引言 Hadoop分布式文件系统(HDFS)被设计成适合执行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有非常多共同点.但同一时候,它和其它的分布式文 ...