HDU 4507
数位DP。
一般是利用DFS来求数位DP了,结合了记忆化搜索。设dp[i][j][k]为前i位,并且前i位的数位和mod7为j,前i位的数字的表示数字值mod7。为什么可以这样呢?因为继续DFS下去,必定是得到一个不是7倍数的数的,因而,k这个位只是在确定叶子结点时有用的。
然后,可以这样选,求一个一些数的平方和(A+B)^2=A^2+2AB+B^2,由于B是可以是多个,因为会乘上一个cnt个数。
至于dp,记录的是当前状态下,其后续(因为是DFS)能得到的符合要求的个数,它们的和,以及它们的平方和。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL __int64
using namespace std;
const LL MOD=1000000007;
struct Node{
LL cnt,msum,sqsum;
void init(){
cnt=-1,msum=0,sqsum=0;
};
}dp[35][7][7];
LL l,r;
int num[35],len;
LL mod[35]; Node dfs(int len,int prem,int presqm,bool flag){
if(len==0){
Node st;
st.init();
if(prem&&presqm){
st.cnt=1;
}
else st.cnt=0;
return st;
}
if(!flag&&dp[len][prem][presqm].cnt!=-1) return dp[len][prem][presqm];
int up=flag?num[len]:9;
Node ans;
ans.init(); ans.cnt=0;
for(int i=0;i<=up;i++){
if(i==7) continue;
Node st=dfs(len-1,(prem+i)%7,(presqm*10+i)%7,(flag&&i==up)?true:false);
ans.cnt+=st.cnt;
ans.cnt%=MOD;
ans.msum=(ans.msum+st.msum+(st.cnt%MOD*(mod[len]*i)%MOD)%MOD)%MOD;
ans.sqsum=(ans.sqsum+st.sqsum+((2*mod[len])%MOD*(i*st.msum)%MOD)%MOD)%MOD;
ans.sqsum=(ans.sqsum+((mod[len]*i)%MOD*(i*mod[len])%MOD)%MOD*st.cnt)%MOD;
}
if(!flag) dp[len][prem][presqm]=ans;
return ans;
} LL slove(LL n){
len=0;
while(n){
num[++len]=(int)(n%10);
n/=10;
}
Node tmp=dfs(len,0,0,true);
return tmp.sqsum;
} int main(){
int T;
mod[1]=1;
for(int i=2;i<35;i++){
mod[i]=(mod[i-1]*10)%MOD;
}
scanf("%d",&T);
while(T--){
for(int i=0;i<35;i++){
for(int k=0;k<7;k++){
for(int l=0;l<7;l++)
dp[i][k][l].init();
}
}
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",((slove(r)-slove(l-1))%MOD+MOD)%MOD);
}
return 0;
}
HDU 4507的更多相关文章
- hdu 4507 数位dp(求和,求平方和)
http://acm.hdu.edu.cn/showproblem.php?pid=4507 Problem Description 单身! 依旧单身! 吉哥依旧单身! DS级码农吉哥依旧单身! 所以 ...
- HDU 4507 (鬼畜级别的数位DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4507 题目大意:求指定范围内与7不沾边的所有数的平方和.结果要mod 10^9+7(鬼畜の元凶) 解题 ...
- HDU 4507 吉哥系列故事――恨7不成妻(数位DP+结构体)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4507 题目大意:如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关 1.整数中某一位是7: ...
- HDU 4507 吉哥系列故事——恨7不成妻
需要推下平方和的式子..维护个数,和,平方和. #include<iostream> #include<cstdio> #include<cstring> #inc ...
- HDU 4507 有点复杂却不难的数位DP
首先来说,,这题我wrong了好几次,代码力太弱啊..很多细节没考虑.. 题意:给定两个数 L R,1 <= L <= R <= 10^18 :求L 到 R 间 与 7 无关的数的平 ...
- 吉哥系列故事――恨7不成妻 HDU - 4507 数位dp
思路 和普通的DP不一样的是 这里求的是满足条件的数的平方的和 而数位DP只跟数每位是什么密切相关 所以要开一个结构 (多加一个 数的和sum 和平方和qsum)存一下各个状态的和的情况 dp[p ...
- HDU 4507 求指定范围内与7不沾边的所有数的平方和 (数位DP)
题意:求区间[l,r]内所有与7无关的数的平方和(取模)定义与7无关的数: 1.数字的数位上不能有7 ...
- HDU 4507 吉哥系列故事——恨7不成妻 (数位DP)
题意: 如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关: 1.整数中某一位是7: 2.整数的每一位加起来的和是7的整数倍: 3.这个整数是7的整数倍: 给定一个区间[L,R],问在此区 ...
- [HDU] 4507 恨7不成妻
吉哥系列故事——恨7不成妻 Time Limit: 1000/500 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tota ...
随机推荐
- Kubernetes+Jenkins+Nexus+Gitlab进行CI/CD集成
前面已经完成了 二进制部署Kubernetes集群,下面进行CI/CD集成. 一.流程说明 应用构建和发布流程说明: 1.用户向Gitlab提交代码,代码中必须包含Dockerfile: 2.将代码提 ...
- hbase无法启动,The node /hbase is not in ZooKeeper
问题详细描述如下: 2016-12-09 15:10:39,160 ERROR [org.apache.hadoop.hbase.client.ConnectionManager$HConnectio ...
- Eclipse 添加本地 SVN插件以及运行项目的流程
去网上下载SVN插件包.里面包含文件如图: 把features和plugins文件夹里面的东西全部复制粘贴到eclipse安装目录下的features和plugins文件夹中就行.然后重启eclips ...
- intellij 创建java web项目(maven管理的SSH)
intellij 创建java web项目(maven管理的SSH) 环境intellij IDEA14.MAVEN.Spring.Struts2.Hibernate.Java Web.工程搭建. 1 ...
- 【SQL】BETWEEN操作符
BETWEEN 操作符在 WHERE 子句中使用,作用是选取介于两个值之间的数据范围. 操作符 BETWEEN ... AND 会选取介于两个值之间的数据范围.这些值可以是数值.文本或者日期. 注意: ...
- IT狂人职场路:揭秘华为百度高管如何炼成?
原文链接:http://www.hdeso.com/waibao/detail.asp?id=45660 原文链接:http://tech.hexun.com/2014-02-18/162264716 ...
- CDR中国元素圆形花纹矢量图制作流程
在论坛中看到这样一个问题,想要使用CorelDRAW矢量绘图工具做出下图所示的中国元素圆形花纹矢量图,小编潜心研究一下,最终有了绘制方法,今天给大家分享下. 步骤一:画同心圆,先画出10个,这个是根据 ...
- 怎样在PDF文件中查找某个特定的词?
不得不说中国的修饰词太多了例如:“滚”可以这样说,请你以一种圆润的方式离开:上次小编在路上听到某男子打电话,好像是给女孩子,那口才,是真的牛,夸人不带重复的.要不是我男孩子,我都想以身相许了.人们常常 ...
- PHP实现文字写入图片功能
/** * PHP实现文字写入图片 */class wordsOnImg { public $config = null; /** * @param $config 传入参数 * @param $co ...
- BZOJ 3319: 黑白树 树+并查集+未调完+神题
Code: #include<bits/stdc++.h> #define maxn 1000003 using namespace std; char *p1,*p2,buf[10000 ...