Dark roads

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 4   Accepted Submission(s) : 1
Problem Description
Economic times these days are tough, even in Byteland. To reduce the operating costs, the government of Byteland has decided to optimize the road lighting. Till now every road was illuminated all night long, which costs 1 Bytelandian
Dollar per meter and day. To save money, they decided to no longer illuminate every road, but to switch off the road lighting of some streets. To make sure that the inhabitants of Byteland still feel safe, they want to optimize the lighting in such a way,
that after darkening some streets at night, there will still be at least one illuminated path from every junction in Byteland to every other junction.




What is the maximum daily amount of money the government of Byteland can save, without making their inhabitants feel unsafe?



 
Input
The input file contains several test cases. Each test case starts with two numbers m and n, the number of junctions in Byteland and the number of roads in Byteland, respectively. Input is terminated by m=n=0. Otherwise, 1 ≤ m ≤ 200000
and m-1 ≤ n ≤ 200000. Then follow n integer triples x, y, z specifying that there will be a bidirectional road between x and y with length z meters (0 ≤ x, y < m and x ≠ y). The graph specified by each test case is connected. The total length of all roads
in each test case is less than 2[sup]31[/sup].
 
Output
For each test case print one line containing the maximum daily amount the government can save.
 
Sample Input
7 11
0 1 7
0 3 5
1 2 8
1 3 9
1 4 7
2 4 5
3 4 15
3 5 6
4 5 8
4 6 9
5 6 11
0 0
 
Sample Output
51
 
Source
2009/2010 Ulm Local Contest
 


#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int pre[200010],n,m;
struct s
{
int x,y,v;
}b[200010];
int cmp(s n1,s n2)
{
return n1.v<n2.v;
}
int find(int a)
{
int r=a,i,j;
while(r!=pre[r])
r=pre[r];
i=a;
while(i!=r)
{
j=pre[i];
pre[i]=r;
i=j;
}
return r;
}
int fun()
{
int sum=0,i,j,k;
for(i=0;i<m;i++)
{
int fa,fb;
fa=find(b[i].x);
fb=find(b[i].y);
if(fa!=fb)
{
pre[fa]=fb;
sum+=b[i].v;
}
}
return sum;
}
int main()
{
//int n,m;
while(scanf("%d%d",&n,&m)!=EOF,n||m)
{
int i,sum=0,ans;
for(i=0;i<=n;i++)
pre[i]=i;
for(i=0;i<m;i++)
{
scanf("%d%d%d",&b[i].x,&b[i].y,&b[i].v);
sum+=b[i].v;
}
sort(b,b+m,cmp);
ans=fun();
printf("%d\n",sum-ans);
}
}

Dark roads--hdoj的更多相关文章

  1. hdu 2988 Dark roads

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2988 Dark roads Description Economic times these days ...

  2. Dark roads(kruskal)

    Dark roads Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Su ...

  3. HDU 2988 Dark roads(kruskal模板题)

    Dark roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. 【HDOJ】2988 Dark roads

    最小生成树. /* */ #include <iostream> #include <string> #include <map> #include <que ...

  5. Jungle Roads --hdoj

    Jungle Roads Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total ...

  6. Constructing Roads --hdoj

    Constructing Roads Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) ...

  7. UVa 11631 - Dark roads

    题目大意:政府为了减小开支决定关闭一些路灯,同时保证照亮的路能连接所有路口. 又是一个MST问题,Kruskal算法,不过数据规模比较大,又Submission Error了...扔这吧... #in ...

  8. HDU 2988 Dark roads (裸的最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2988 解题报告:一个裸的最小生成树,没看题,只知道结果是用所有道路的总长度减去最小生成树的长度和. # ...

  9. HDU2988-Dark roads,HDU1233-还是畅通工程-最小生成树

    最小生成树: 中文名 最小生成树 外文名 Minimum Spanning Tree,MST 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的 ...

  10. HDU 2988.Dark roads-最小生成树(Kruskal)

    最小生成树: 中文名 最小生成树 外文名 Minimum Spanning Tree,MST 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的 ...

随机推荐

  1. 【WPF】使用 XAML 的 Trigger 系统实现三态按钮

    利用 WPF 的 Trigger 系统,也可以很简单的只使用xmal实现三态按钮.在Window或UserControl的资源中声明按钮的style并加入触发功能.使用的时候直接在button里复写s ...

  2. 【JAVA练习】- 接收三个班各四个学员的成绩,算平均分

    package class_average; import java.util.Scanner;//调用Scanner类 public class average { public static vo ...

  3. for 循环练习题(2)

    一张纸的厚度是0.0001米,将纸对折,对折多少次厚度超过珠峰高度8848米 var x=0.0001; for(var a=1;true;a++){ x=x*2; if (x>8848) { ...

  4. node post和get请求原理

    重要:GET和POST请求他们都是上行请求,都是把数据从浏览器带向服务器的方式, GET 请求实际上就是识别URL中的querystring部分POST请求,一般用来发送大量的内容,此时node非常害 ...

  5. oracle从入门到精通复习笔记续集之PL/SQL(轻量版)

    复习内容: PL/SQL的基本语法.记录类型.流程控制.游标的使用. 异常处理机制.存储函数/存储过程.触发器. 为方便大家跟着我的笔记练习,为此提供数据库表文件给大家下载:点我下载 为了要有输出的结 ...

  6. python迭代器,生成器,推导式

    可迭代对象 字面意思分析:可以重复的迭代的实实在在的东西. list,dict(keys(),values(),items()),tuple,str,set,range, 文件句柄(待定) 专业角度: ...

  7. 【转载】java文件路径问题及getResource和getClassLoader().getResource的区别

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u012572955/article/details/52880520我们经常在java的io操作中读 ...

  8. 在Ubuntu环境下搭建esp32开发环境

    第一步:下载必要的库文件   sudo apt-get install git make gcc libncurses5-dev flex bison gperf python-serial     ...

  9. 57.query phase

    主要知识点: query phase步骤 query phase如何提升性能     一.query phase步骤 一次query phase一般包括以下三个步骤     The query pha ...

  10. Java Web学习总结(28)——Java Web项目MVC开源框架SSH和SSM比较

    SSH和SSM定义 SSH 通常指的是 Struts2 做控制器(controller),spring 管理各层的组件,hibernate 负责持久化层. SSM 则指的是 SpringMVC 做控制 ...